::: Medicinrådet

Bilag til Medicinrådets anbefaling vedrørende alectinib til adjuverende behandling af ALK-positiv ikke-småcellet lungekræft

Post-operative patienter med stadium IB-IIIAsygdom og høj risiko for tilbagefald

Vers. 1.0

Bilagsoversigt

- 1. Ansøgers notat til Rådet vedr. alectinib
- 2. Forhandlingsnotat fra Amgros vedr. alectinib
- 3. Ansøgers endelige ansøgning vedr. alectinib

Til Medicinrådet,

Høringssvar fra Roche Pharmaceuticals A/S vedrørende Medicinrådets anbefaling vedr. Alecensa (alectinib) til adjuverende behandling af ALK-positiv ikke-småcellet lungekræft.

Roche takker for det fremsendte udkast til Medicinrådets vurderingsrapport af Alecensa (alectinib) til adjuverende behandling af ALK-positiv ikke-småcellet lungekræft. Roche ønsker at kommentere på enkelte dele i Medicinrådets tilgang; både i den kliniske samt den sundhedsøkonomiske vurdering.

I nedenstående afsnit forholder Roche sig til følgende emner enkeltvis:

- Sammenligneligheden mellem populationen i ALINA studiet og den danske population af patienter med tidlige stadier af ALK+ ikke-småcellet lungekræft
- Vurderingen af de forskellige endepunkter
- Den sundhedsøkonomiske vurdering

Sammenligneligheden mellem populationen i ALINA studiet og den danske population (afsnit 2.2.1):

- Patienter med stadie IB-IIIA sygdom med høj risiko for tilbagefald er en del af indikationen for Alecensa. Det ligger derfor implicit, at der f.eks. er inkluderet flere patienter med N2-sygdom end hvad den generelle danske population vil have, da de jo ikke alle vil være i høj risiko for tilbagefald.
- 2. De beskrevne forskelle mellem en dansk population og ALINA studiepopulationen må forventes at være aktuelle for både alectinib og kemo-armen. Der må forventes samme risiko for overestimering af effekten af kemo-armen. I vurderingsrapporten tillægges risikoen for overestimering af alectinib højere vægt igennem rapporten på trods af at ALINA studiet er et randomiseret studie der estimerer den relative effekt mellem alectinib og kemoterapi.
- 3. Sammenligning af den danske population sker på baggrund af alle danske NSCLC tilfælde i stadie IB-IIIA og der bør tages højde for at der er forskel på denne population og danske patienter med ALK+ NSCLC i stadie IB-IIIA samt den del af populationen med høj risiko for tilbagefald. Det kunne f.eks. være i forhold til udvikling af CNS-metastaser.
- 4. I forhold til den danske patientpopulation som ikke vil kunne opereres i henhold til danske retningslinjer men i stedet modtager kurativt intenderet kemoradioterapi, har de en væsentligt dårligere prognose end patienter med operable sygdom har (1). Disse patienter har i ALINA studiet fået operation og efterfølgende alectinib og har en væsentligt bedre DFS end de patienter som fik kemoterapi (1,2).

Vurdering af de forskellige endepunkter:

- 1. Vurdering af DFS (afsnit 2.3.3)
 - a. Side 24 Under vurderingen af DFS sammenlignes DFS data fra ALINA studiet med data fra et dansk abstract af Peter Meldgaard et al (3). Data i abstractet dækker over en lang bredere population end den relevante population der ansøges på, og der er derfor ikke direkte sammenligning med ALINA data, hvilket også beskrives i vurderingsrapporten. Det er uklart hvorfor abstractet stadig er inkluderet i vurderingen samt vurderes relevant at sammenligne med,

da disse data hverken er peer-reviewed, er på en anden population samt at der er tale om en retrospektiv opgørelse. Abstractet lever ikke op til de krav som Medicinrådet sædvanligvis stiller til ansøgninger, og det er ikke klart hvordan dette abstract er identificeret.

- 2. Vurdering af OS (afsnit 2.3.4)
 - a. Side 25 Under vurderingen af OS bruges en metaanalyse på EGFR-hæmmere hos postoperative patienter med EGFR-muteret NSCLC til at konkludere at der ikke er korrelation imellem DFS og OS på adjuverende alecensa. EFGR og ALK er to forskellige undergrupper i lungekræft, som har visse ligheder, men som ikke er direkte sammenlignelige. Der er heller ingen generel korrelation mellem effekten af EFGR-hæmmer og ALK-hæmmere. Roche er derfor uforstående overfor brugen af denne metaanalyse i vurderingen af OS.Yderligere, stammer over 50% af patienterne/data i metaanalysen fra et meget tidligt data cut fra ADAURA (4), hvor forfatterne selv skriver at OS data er umodne, da < 5 % af patienterne var døde. Osimeritinib er efterfølgende blevet anbefalet af Medicinrådet, da netop korrelation mellem DFS og OS kunne påvises baseret på ADAURA. Vi opfordrer Medicinrådet til at inddrage den analyse af korrelation mellem DFS/PFS og OS på tværs af studier i NSCLC, som Roche har indsendt. Her indgår nyere data fra ADAURA samt en systematisk tilgang ift. Inddragelse af data/studier.</p>
- 3. Vurdering af AE (afsnit 2.4)
 - a. Side 28 vurdering af AE der tages ikke højde for den relativ store andel af patienter som stopper behandling pga AE'er i kemobehandling, dette især i betragtning af den korte eksponeringstid på 4 serier. Dette kan for patienter med restsygdom - øge risikoen for tilbagefald.
- 4. Samlet vurdering (afsnit 2.5)
 - a. Side 29 Imens vi afventer modne OS data fra ALINA studiet, mener Roche at der i den samlede vurdering bør anerkendes den nuværende kliniske værdi som minimum at tidsforskyde tilbagefaldda prognosen efter tilbagefald er en helt anden.

Sundhedsøkonomi.

- 1. Probabilistisk sensitivitetsanalyse.
 - a. Vi undrer os over, at Medicinrådet ikke mener, at en PSA kan udføres. Det fremgår af vurderingen, at en PSA ikke kan udføres, da vi i Roche ikke har inkluderet relevante parametre i analysen, og her nævnes behandlingsvarighed, nytteværdier og treatment waning. Nytteværdierne er inkluderet i PSA'en. Treatment waning er et funktion/egenskab som Medicinrådet har introduceret i analysen, og ikke en del af Roches analyse. Det må derfor være Medicinrådet der også inkluderer dette i PSA'en. Slutteligt er behandlingsvarigheden inkluderet som KM-kurverne fra ALINA studiet og ikke et gennemsnit. Medicinrådet har ikke sædvanligt efterspurgt eller udført PSA analyse, hvor de respektive punkter på KM-kurverne justeres. Vi opfordrer derfor Medicinrådet til at udføre en PSA.
- 2. Korrelation mellem DFS og OS.
 - a. Medicinrådet har efterspurgt Roche evidens og argumentation for korrelation mellem DFS og OS hos patienter med NSCLC, hvilket vi har efterlevet. Denne evidens fremgår ikke af Medicinrådet vurdering, men i stedet fremgår evidens, hvor det er uklart hvordan disse er identificeret. Vi opfordrer derfor Medicinrådet til at anvende den evidens som er efterspurgt, og som er systematisk fremsøgt.

1 Sørensen, J. B., Horvat, P., Rosenlund, M., Kejs, A. M., Patel, D., Juarez-Garcia, A., ... Ekman, S. (2021). Initial Treatment and Survival in Danish Patients Diagnosed with Non-Small-Cell Lung Cancer (2005–2015): SCAN-LEAF Study. Future Oncology, 18(2), 205–214. https://doi.org/10.2217/fon-2021-0746

2 Wu YL, Dziadziuszko R, Ahn JS, et al. Alectinib in Resected ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2024;390(14):1265-1276. doi:10.1056/NEJMoa2310532

3 Meldgaard, Peter. (2022). EP03.01-015 Disease-Free Survival and Clinical Characteristics in Early-Stage NSCLC Patients From a Danish Cohort. Journal of Thoracic Oncology. 17. S243-S244. 10.1016/j.jtho.2022.07.410. 4 Wu YL, Tsuboi M, He J, et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med. 2020;383(18):1711-1723. doi:10.1056/NEJMoa2027071

Amgros I/S Dampfærgevej 22 2100 København Ø Danmark

T +45 88713000 F +45 88713008

Medicin@amgros.dk www.amgros.dk

Forhandlingsnotat

19.12.2024

MBA/DBS

Dato for behandling i Medicinrådet	29.01.2025
Leverandør	Roche
Lægemiddel	Alecensa (alectinib)
Ansøgt indikation	Adjuverende behandling af ALK-positiv ikke-småcellet lungekræft
Nyt lægemiddel / indikationsudvidelse	Indikationsudvidelse

Prisinformation

Amgros har følgende aftalepris på Alecensa (alectinib):

Tabel 1: Aftalepris

Lægemiddel	Styrke (Paknings- størrelse)	AIP (DKK)	Nuværende SAIP, (DKK)	Nuværende rabat ift. AIP
Alecensa	150 mg (224 stk. kapsler)	33.269,72		

Aftaleforhold

Informationer fra forhandlingen

Konkurrencesituationen

Tabel 1: Lægemiddeludgift pr. patient*

Lægemiddel	Styrke (paknings- størrelse)	Dosering	Pris pr. pakning (SAIP, DKK)	Lægemiddeludgift pr. behandling/år (SAIP, DKK)
Alecensa	150 mg (224 stk. kapsler)	600 mg 2 gange dagligt		

*Jævnfør Medicinrådets vurderingsrapport, er komparator kemoterapi (4 serier cisplatin/carboplatin i kombination med vinorelbin i 3,84 måneder). Udgiften for komparator er minimal og er derfor ikke angivet i denne tabel.

Status fra andre lande

Tabel 2: Status fra andre lande

Land	Status	Kommentar	Link
Norge	Anbefalet		Link til anbefaling
England	Anbefalet		Link til anbefaling

Opsummering

Application for the assessment of alectinib (Alecensa) for ALK-positive early non-small cell lung cancer (NSCLC)

Color scheme for text high	lighting
Color of highlighted text	Definition of highlighted text
	Confidential information
[Other]	[Definition of color-code]

Contact information

Contact information	
Name	Christian Graves Beck
Title	Nordic HTA Hub Enabler
Phone number	+45 23 44 20 83
E-mail	Christian_graves.beck@roche.com
Name	Andreas Fanø
Title	Medical Science Partner/ Precision Medicine Partner
Phone number	+45 42 14 29 88
E-mail	Andreas.fanoe@roche.com
Name	Simone Kjeldbæk
Title	Medical writer
Phone number	+45 21 21 60 75
E-mail	Simone.kjeldbaek@roche.com

Table of contents

Conta	ct information	2
Tables	and Figures	6
Abbre	viations	11
1.	Regulatory information on the medicine	12
2.	Summary table	13
3.	The patient population, intervention, choice of comparator(s) and relevant outcomes	16
2.1	The modical condition	10
3.1	Detient perulation	10
3.2	Patient population	18
5.5 2.4	The intervention	19
3.4		20
3.4.1	The intervention in relation to Danish clinical practice	20
3.5	Choice of comparator(s)	21
3.6	Cost-effectiveness of the comparator(s)	24
3.7	Relevant efficacy outcomes	24
3.7.1	Definition of efficacy outcomes included in the application	24
4.	Health economic analysis	25
4. 4.1	Health economic analysis Model structure	 25 25
4. 4.1 4.2	Health economic analysis Model structure Model features	 25 25 26
4. 4.1 4.2 4.3	Health economic analysis Model structure Model features Time Horizon	 25 25 26 27
4. 4.1 4.2 4.3 4.4	Health economic analysis Model structure Model features Time Horizon Perspective	25 25 26 27 27
 4.1 4.2 4.3 4.4 5.	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature	25 25 26 27 27 27
 4.1 4.2 4.3 4.4 5.1 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment	25 25 26 27 27 27 27
 4.1 4.2 4.3 4.4 5.1 5.2 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life	25 25 26 27 27 27 27 27 28
 4.1 4.2 4.3 4.4 5.1 5.2 5.3 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model	25 26 27 27 27 27 27 28 28
 4.1 4.2 4.3 4.4 5.1 5.2 5.3 6. 	Health economic analysis Model structure Model features. Time Horizon Perspective. Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model	25 25 27 27 27 27 27 28 28 28 30
 4.1 4.2 4.3 4.4 5. 5.1 5.2 5.3 6. 6.1 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens	25 25 26 27 27 27 27 27 28 28
 4.1 4.2 4.3 4.4 5.1 5.2 5.3 6. 6.1 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC.	25 25 27 27 27 27 27 28 28 30
 4.1 4.2 4.3 4.4 5. 5.1 5.2 5.3 6. 6.1 6.1.1 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC. Relevant studies	25 25 27 27 27 27 28 28 28 30 30 30
 4.1 4.2 4.3 4.4 5.1 5.2 5.3 6.1 6.1.1 6.1.2 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC. Relevant studies Comparability of studies	25 25 26 27 27 27 27 27 27 28 30 30 30 34
 4.1 4.2 4.3 4.4 5. 5.1 5.2 5.3 6. 6.1.1 6.1.2 6.1.2.1 	Health economic analysis Model structure Model features Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC Relevant studies Comparability of studies	25 26 27 27 27 27 28 28 30 30 30 34 34
 4.1 4.2 4.3 4.4 5.1 5.2 5.3 6.1 6.1.1 6.1.2.1 6.1.2.1 6.1.3 	Health economic analysis Model structure Model features. Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC. Relevant studies Comparability of studies Comparability of the study population(s) with Danish patients eligible for	25 26 27 27 27 27 27 28 30 30 30 34 34
 4.1 4.2 4.3 4.4 5. 5.1 5.2 5.3 6. 6.1.1 6.1.2 6.1.2 6.1.3 	Health economic analysis Model structure Model features Time Horizon Perspective Overview of literature Literature used for the clinical assessment Literature used for the assessment of health-related quality of life Literature used for inputs for the health economic model Efficacy Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC Relevant studies Comparability of studies Comparability of the study population(s) with Danish patients eligible for treatment	25 25 27 27 27 27 28 28 30 30 34 34 38

7.	Comparative analyses of efficacy	45
7.1.1	Results from the comparative analysis	45
8.	Modelling of efficacy in the health economic analysis	46
8.1	Presentation of efficacy data from the clinical documentation used in the	
	model	46
8.1.1	Extrapolation of efficacy data – Adjuvant treatment	46
8.1.2	Extrapolation of efficacy data – Treatment after recurrence	47
8.1.3	Extrapolation of efficacy data - Non-metastatic recurrence	48
8.1.4	Extrapolation of efficacy data – Metastatic recurrence	49
8.2	Presentation of efficacy data from data from the clinical documentation	
	used in the model	50
8.2.1	Disease-Free Survival	50
8.2.1.1	1 Types of Disease-Free Events	51
8.2.2	Extrapolation of efficacy data	51
8.2.2.1	1 Extrapolation of DFS	51
8.2.2.1	1.1 Adjustments to Disease-Free Survival	53
8.2.2.2	2 Extrapolation of PFS & OS	54
8.2.2.2	2.1 Progression after recurrence	54
8.2.2.2	2.2 Non-metastatic Recurrence	54
8.2.2.2	2.3 Metastatic Recurrence (First-Line)	56
8.2.2.2	2.4 Metastatic Recurrence (Second-Line)	59
8.2.2.2	2.5 Type of progression free events.	60
873	Calculation of transition probabilities	01
0.2.J	Presentation of efficacy data from [additional documentation]	62
8.5 8.4	Modelling effects of subsequent treatments	03
8.5	Other assumptions regarding efficacy in the model	63
8.6	Overview of modelled average treatment length and time in model health	
	state	63
8.6.1	Adjuvant treatment duration	64
8.6.2	Treatment after recurrence duration	65
9.	Safety	65
9.1	Safety data from the clinical documentation	65
9.2	Safety data from external literature applied in the health economic model	70
10.	Documentation of health-related quality of life (HRQoL)	72
10.1	Presentation of the health-related quality of life	72
10.1.1	Study design and measuring instrument	72
10.1.2	Data collection	72
10.1.3	HRQoL results	74
10.2	Health state utility values (HSUVs) used in the health economic model	76
10.2.1	HSUV calculation	76
10.2.2	Mapping	77

10.2.3	3 Disutility calculation	
10.2.4	4 HSUV results	
10.2.5	5 Study design	
10.2.6	6 Data collection	
10.2.7	7 HRQoL Results	
10.2.8	8 HSUV and disutility results .	
11.	Resource use and associated	d costs
11.1	Medicine costs - interventior	n and comparator79
11.2	Medicine costs – co-administ	tration
11.3	Administration costs	
11.4	Disease management costs	
11.5	Costs associated with manag	gement of adverse events 81
11.6	Subsequent treatment costs	
11.7	Patient costs	
11.8	Other costs (e.g. costs for ho	me care nurses, out-patient rehabilitation and
	palliative care cost)	
12.	Results	
12.1	Base case overview	
12.1.1	1 Base case results	
12.2	Sensitivity analyses	86
12 2 1	1 Deterministic sensitivity anal	lvces 86
12.2.1	2 Scenario analysis	88
12.2.2	2 Probabilistic sensitivity analy	
12.2.5	5 Trobabilistic sensitivity analy	
13.	Budget impact analysis	
13 1	Number of patients: 8 (assur	ned Market share 100%) 90
13.2	Budget impact	90
14.	List of experts	
	·	
15.	References	
Аррен	endix A. Main characteristics	of studies included
Арреі	endix B. Efficacy results per s	study 104
Арреі	endix C. Comparative analysi	is of efficacy107
Арреі	endix D. Extrapolation	
Арреі	endix E. Serious adverse ever	nts 111
Арреі	endix F. Health-related quality	ty of life 116

Apper	ndix G.	Probabilistic sensitivity analyses	120
Apper	ndix H.	Literature searches for the clinical assessment	122
Apper	ndix I.	Literature searches for health-related quality of life	123
I.1	Health-	related quality-of-life search	123
I.1.1	Search	strategies	125
Origin	al reviev	v (March 2021)	131
June 2	022 upd	late	132
July 20	023 upda	ate	132
Septer	mber 20	23 update	132
Overa	ll summa	ary	133
I.1.2	Quality	assessment and generalizability of estimates	166
I.1.3	Unpubl	ished data	166
Apper	ndix J.	Literature searches to the health economic model	167
J.1	Externa	Il literature for input to the health economic model	167
J.1.1	System	atic search for clinical Evidence on Interventions used for Locally	
	Advanc	ed or Metastatic NSCLC in a Population with ALK Positive Disease	167
Supple	ementar	y searches	168
J.1.2	Exampl	le: Targeted literature search for [estimates]	168

Tables and Figures

Tables:

Table 1 Incidence and prevalence in the past 5 years	. 19
Table 2 Estimated number of patients eligible for treatment	. 19
Table 3 Efficacy outcome measures relevant for the application (9)	. 24
Table 4 Features of the economic model	. 26
Table 5 Relevant literature included in the assessment of efficacy and safety	. 28
Table 6 Relevant literature used for input to the health economic model	. 29
Table 7: Number of patients in the in the alectinib and chemotherapy arm in ITT	
population, stage II-IIIA subpopulation and safety-evaluable population	. 31
Table 8: Overview of study design for studies included in the comparison	. 33
Table 9 Baseline characteristics of patients in studies included for the comparative	
analysis of efficacy and safety (36).	. 35
Table 10 Characteristics in the relevant Danish population and in the health	
economic model	. 38
Table 11 Summary Table of Disease-Free Survival in Subgroups of Patients (9)	. 40
Table 12 Results from the comparative analysis of alectinib vs. platinum-based	
chemotherapy for patients with ALK-positive early NSCLC	. 45
Table 13 Adjuvant Treatment (ALINA; Safety-Evaluable Patients; CCOD June 26,	
2023)	. 47
Table 14 Non-metastatic recurrence treatment	. 48
Table 15 Definition of Treatment after Non-Metastatic Recurrence	. 48

Table 16 Metastatic recurrence treatment	49
Table 17 Definition of First-Line Metastatic Treatment	49
Table 18 Definition of Second-Line Metastatic Treatment	49
Table 19 Type of Disease-Free Survival Events (ALINA, CCOD: June 26, 2023)	51
Table 20 AIC and BIC Scores of Parametric Survival Models of Investigator-	
Assessed DFS (ALINA; CCOD: June 26, 2023)	52
Table 21 Mortality Adjustment	53
Table 22 Patient Characteristics of Studies considering First-Line Metastatic	
Treatment with Crizotinib (Clinical SLR [Advance-Stage NSCLC]; Search:	
September, 2023)	56
Table 23 Types of Progression-Free Survival Events	60
Table 24 Transitions in the health economic model	62
Table 25 Estimates in the model	63
Table 26 Overview of modelled average treatment length and time in model	
health state, undiscounted and not adjusted for half cycle correction (adjust the	
table according to the model)	64
Table 27 Proportion of Patients discontinuing Treatment after each Month/Cycle	
(ALINA; Safety-Evaluable Patients; CCOD: June 26, 2023)	64
Table 28 Treatment Discontinuation with Treatment after Recurrence	65
Table 29 Overview of safety events. The median duration of treatment was 23.9	
months in the alectinib group and 2.1 months in the chemotherapy group (36)	66
Table 30 Serious adverse events (All AEs were reported during treatment and until	
date of study completion or discontinuation, CCOD, 28 days after last dose of	
alectinib or 28 days after the end of the last cycle of chemotherapy)	67
Table 32 Adverse events used in the health economic model that appear in more	
than 10 % of patients	68
Table 32 Subsequent Treatments In Patients with Disease Recurrence (ITT	
Population)	70
Table 33 Overview of included HRQoL instruments	72
Table 34 Pattern of missing data and completion – SF36v2 and EQ-5D-5L VAS	73
Table 35 HRQoL SF-36v2 - summary statistics MCS and PCS	75
Table 36 Health State Utility Values – Mixed-Effects Model Danish tariffs (ALINA;	
CCOD: June 26, 2023)	77
Table 37 Health State Utility Values – Summary Danish tariffs (ALINA; CCOD: June	
26, 2023)	77
Table 38 Overview of health state utility values [and disutilities]	77
Table 39 Health State Utility Values – Non-Metastatic Recurrence, Metastatic	
Recurrence (first-line) and Metastatic Recurrence (second-line) (59)	78
Table 40 Overview of health state utility values [and disutilities]	78
Table 41 Medicine costs used in the model	79
Table 42 Administration costs used in the model	80
Table 43 Disease management costs used in the model	81
Table 44 Cost associated with management of adverse events	81
Table 45 Medicine costs of subsequent treatments	84
Table 46 Base case overview	85
Table 47 Base case results, discounted estimates	86

Table 48 One-way sensitivity analyses results	87
Table 49 Scenario analysis	88
Table 50 Number of new patients expected to be treated over the next five-year	
period if the medicine is introduced (adjusted for market share)	90
Table 51 Expected budget impact of recommending the medicine for the	
indication	90
Table 52 Main characteristic of studies included	99
Table 53 Results per study	104
Table 54 Disease-Free Survival \geq 5 Years (Clinical SLR [Early-Stage NSCLC]; Search:	
September, 2023)	108
Table 55 Summary of assumptions associated with extrapolation of DFS	109
Table 56 Adverse events applied in the health economic model	111
Table 57: Summary of SF-36v2 Domains and Component Summary Scores at	
Baseline, Week 12, Week 96 (Alectinib) and Disease Follow-Up Visit 7*	
(Chemotherapy) in ITT Population (Mean [SD])	119
Table 58. Overview of parameters in the PSA	120
Table 59 Overview of study design for studies included in the analyses	122
Table 60 Bibliographic databases included in the literature search	123
Table 61 Other sources included in the literature search	123
Table 62 Conference material included in the literature search	124
Table 63 Search strategy for [Embase] 1974 to september 2023	125
Table 64 Search strategy for MEDLINE(R) 1946 to September 2023	127
Table 65 Search strategy for EBM Reviews - Cochrane Database of Systematic	
Reviews 2005 to September 2023	129
Table 66: Eligibility criteria	130
Table 67: Summary of published HSUV data associated with patients with early	
NSCLC (n=27)	134
Table 68: Inclusion and exclusion criteria	170
Table 69: Overview of included studies	173
Table 70: List of included studies (categorised according to prior treatment)	174

Figures

Figure 1 Health State Diagram of the Cost-Effectiveness Model	26
Figure 2: ALINA (BO40336) study design. ALK+ - anaplastic lymphoma kinase-	
positive; NSCLC – non-small cell lung cancer; ECOG - Eastern Cooperative	
Oncology Group; BID – twice a day	31
Figure 3: Kaplan-Meier plot of disease-free survival in Subgroup of patients with	
Stage IB	39
Figure 4 Kaplan-Meier plot of disease-free survival in Subgroup of patients with	
Stage II	39
Figure 5 Kaplan-Meier plot of disease-free survival in Subgroup of patients with	
Stage IIIA	40
Figure 6: Kaplan-Meier plot of disease-free survival in the subpopulation of	
patients with stage II-IIIA disease	41
Figure 7: Kaplan-Meier plot of disease-free survival in the ITT population (stage IB-	
IIIA)	41
Figure 8: Kaplan-Meier plot of overall survival in the subpopulation (stage II-IIA).	42

Figure 9: Kaplan-Meier plot of overall survival in the ITT population (stage IB-IIA)	43
Figure 10: Kaplan-Meier plot of time to CNS recurrence or death, in the	
subpopulation (stage II-IIA)	44
Figure 11: Kaplan-Meier plot of time to CNS recurrence or death in the ITT	
population (stage IB-IIA).	45
Figure 12 Kaplan-Meier Estimates – Investigator-Assessed DFS (ALINA; CCOD: June	
26, 2023)	50
Figure 13 Log-cumulative Hazard Plot – Investigator-Assessed DFS (ALINA; CCOD:	
June 26, 2023)	50
Figure 14 Schoenfeld Residuals – Investigator-Assessed DFS (ALINA; CCOD: June	
26, 2023)	51
Figure 15 Alectinib arm parametric distributions	52
Figure 16 Chemotheraphy arm parametric distributions	52
Figure 17 Projected Investigator-Assessed DFS with Log-Logistic Parametric	
Survival Model (ALINA; CCOD: June 26, 2023)	52
Figure 18 Projected Investigator-Assessed DFS with Log-Logistic Parametric	
Survival Model and Cure and Mortality (ALINA; CCOD: June 26, 2023)	54
Figure 19 Progression-Free Survival after Non-Metastatic Recurrence by	
Treatment Option (Chemotherapy)	55
Figure 20 Progression-Free Survival after Non-Metastatic Recurrence by	
Treatment Option (No treatment)	55
Figure 21 Alectinib Progression-Free Survival on First-Line Metastatic Treatment	57
Figure 22 Crizotinib Progression-Free Survival on First-Line Metastatic Treatment	57
Figure 23 Brigatinib Progression-Free Survival on First-Line Metastatic Treatment	58
Figure 24 Lorlatinib Progression-Free Survival on First-Line Metastatic Treatment	58
Figure 25 No treatment Progression-Free Survival on First-Line Metastatic	
Treatment	58
Figure 26 Alectinib OS on Second-Line Metastatic Treatment	59
Figure 27 Cisplatin + Pemetrexed Overall Survival on Second-Line Metastatic	
Treatment	60
Figure 28: Modelled overall survival in the economic model.	61
Figure 29: Markov trace alectinib	61
Figure 30: Markov trace Themotherapy	61
Figure 31: SF-36v2 - Mental component summary	74
Figure 32: SF-36v2 - Physical Component Summary	74
Figure 33: EQ-5D-VAS	74
Figure 34: EQ-5D-VAS	74
Figure 35 Graphical Display of Utilities per (Jensen et al 2021) (58)	76
Figure 36 Univariate sensitivity analysis - Alectinib vs Chemotherapy - Inc. cost-	
utility ratio (Base case: DKK	87
Figure 37 Cost-Effectiveness Plane	89
Figure 38 Incremental Cost-Effectiveness Plane	89
- Figure 39 Cost-Effectiveness Acceptability Curve	90
- Figure 40: SF-36v2 - Bodily pain	116
- Figure 41: SF-36v2 – General health	116
Figure 42: SF-36v2 – Mental health	117

Figure 43: SF-36v2 – physical functioning	117
Figure 44: SF-36v2 – Role emotional	117
Figure 45: SF-36v2 – Role-Physical	118
Figure 46: SF-36v2 – Social functionning	118
Figure 47: SF-36v2 – Vitality	118

Abbreviations

ALK-positive	Anaplastic lymphoma kinase-positive
IV	Intravenous
NE	Not Estimated
NGS	Next generation sequencing
NSCLC	Non-small cell lung cancer
OS	Overall survival
PFS	Progression free-survival
EGFR	Epidermal Growth Factor Receptor
KRAS	Kirsten RAt Sarcoma
CNS	Central Nervous System
NE	Not Estimated
ст	Computed Tomography
EML4	Echinoderm Microtubule-associated Protein-like 4
ТКІ	Tyrosine Kinase Inhibitor
BRAF	B-rapidly growing fibrosarcoma
ROS1	ROS proto-oncogene 1, receptor tyrosine kinase
PD-L1	Programmed Cell Death Ligand 1
DLCG	Danish Lung Cancer Group
DLCR	Danish Lung Cancer Registry
DFS	Disease-free survival
DMC	Danish Medicines Council
CNS-DFS	Time to central nervous system recurrence or death
SLR	Systematic Literature Review
CEA	Cost-Effectiveness Acceptability
INV-DFS	Investigator Pressed DFS
BID	Bis in die (twice a day)
CCOD	Clinical cut-off date
idmc	independent Data Monitoring Committee
ECOG PS	Eastern Cooperative Oncology Group Performance Status
РН	Proportional Hazard
AIC	Akaike Information
BIC	Bavesian Information Criterion
IPD	Individual Patient Data
95% CI	95 % Confidence Interval
AE	Adverse Event
SAE	Serious Adverse Event
HRQoL	Health-Related Quality of Life
PRO	Patient-Reported Outcomes
ПТ	Intention to treat
PCS	Physical Component Summary
MCS	Mental Component Summary
MIDs	Minimal Important Differences
HSUV	Health state utility values
FO-5D-5I	EuroOol 5-dimension, 5-level questionnaire
SE-36v2	Short Form-36 version 2
DRG	Diagnose Relative Group
РРР	Pharmacy Purchase Prices
DSA	Deterministic Sensitivity Analyses
PSA	Probabilistic Sensitivity Analyses
CEAC	cost-effectiveness acceptability curves
OALY	Quality Adjusted Life Year
ICER	Incremental cost per OALY gained
icen	merennentur oost per Qner Bameu

1. Regulatory information on the medicine

Overview of the medicine	
Proprietary name	Alecensa
Generic name	Alectinib
Therapeutic indication as defined by EMA	Alecensa as monotherapy is indicated as adjuvant treatment fol- lowing tumor resection for adult patients with anaplastic lym- phoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) with high risk of recurrence.
	Alecensa as monotherapy is indicated for the first-line treatment of adult patients with ALK-positive advanced NSCLC.
	Alecensa as monotherapy is indicated for the treatment of adult patients with ALK-positive advanced NSCLC previously treated with crizotinib
Marketing authorization holder in Denmark	Roche Pharmaceuticals A/S
ATC code	L01ED03
Combination therapy and/or co-medication	No
(Expected) Date of EC approval	June 2024
Has the medicine received a conditional marketing authorization?	No
Accelerated assessment in the European Medicines Agency (EMA)	No
Orphan drug designation (include date)	No
Other therapeutic indications approved by EMA	 Alecensa as monotherapy is indicated for the first-line treatment of adult patients with ALK-positive advanced NSCLC. Alecensa as monotherapy is indicated for the treatment
	of adult patients with ALK-positive advanced NSCLC pre- viously treated with crizotinib.

Other indications that have been evaluated by the DMC (yes/no)	Yes, the following indication has been evaluated and is recom- mended by the DMC:
	Alecensa as monotherapy is indicated for the first-line treatment of adult patients with ALK-positive advanced NSCLC.
Dispensing group	BEGR
Packaging – types, sizes/number of units and concentrations	Aluminum/aluminum (PA/Alu/PVC/Alu) blisters containing 8 hard capsules. Pack size: 224 (4 packs of 56) hard capsules. One capsule contains 150 mg alectinib.

2. Summary table

Summary	
Therapeutic indication relevant for the assessment	Alecensa as monotherapy is indicated as adjuvant treatment following tumor resection for adult patients with ALK-positive NSCLC with high risk of recurrence.
Dosage regiment and administration	The recommended dose of Alecensa is 600 mg taken twice daily with food (total daily dose of 1200 mg).
	Treatment with Alecensa in the adjuvant setting should be continued until disease recurrence, unacceptable toxicity or for 2 years.
Choice of comparator	Adjuvant platinum-based chemotherapy:
	 Drug: Cisplatin Cisplatin 75 milligrams per square meter (mg/m²) on Day 1 every 21 days IV intravenously (IV) until com- pletion of treatment period (four 21-day cycles), re- currence of disease, unacceptable toxicity, with- drawal of consent, or death, whichever occurs first. In combination with one of the following:
	Drug: Vinorelbine
	 Vinorelbine 25 mg/m² IV on Days 1 and 8 Q21D until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of con- sent, or death, whichever occurs first.
	Drug: Gemcitabine
	 Gemcitabine 1250 mg/m² on Days 1 and 8 Q21D IV until completion of treatment period (4 cycles), recur- rence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first.
	Drug: Pemetrexed
	 Pemetrexed 500 mg/m² Day 1 Q21D until completion of treatment period (4 cycles), recurrence of disease,

	unacceptable toxicity, withdrawal of consent, or death, whichever occurs first.
	For participants who experience unacceptable toxicity with cisplatin, carboplatin can be used.
	In Denmark, treatment of early ALK-positive NSCLC is limited to surgery followed by platinum-based chemotherapy namely cisplatin and vinorelbine (1). Immunotherapy is not recommended for patients without known ALK-positive NSCLC in neither the neoadjuvant setting nor adjuvant setting (2, 3).
Prognosis with current treatment (comparator)	Patients with ALK-positive NSCLC account for a relatively small popula- tion group in Denmark and currently, no data on the prognosis for Dan- ish patients with ALK-positive early NSCLC is available.
	However, data has shown that patients with ALK-positive early NSCLC have a trend towards poorer outcomes as compared to other molecu- lar actionable targets such as epidermal growth factor receptor (EGFR) and Kirsten RAt Sarcoma (KRAS) but data is limited and shows conflict- ing results (4, 5).
	In the metastatic setting, development of Central Nervous System (CNS) metastasis in ALK-positive NSCLC patients has been found - lead- ing to poorer survival and poorer quality of life (6). However, Alecensa has shown efficacy against CNS metastasis in both metastatic and early ALK-positive NSCLC patients leading to a better prognosis (7, 8).
Type of evidence for the clinical evaluation	Head-to-head study.
Most important	Intention to treat (ITT) population
efficacy endpoints (Difference/gain compared to comparator)	<i>Median DFS</i> Alectinib: Not Estimated (95% CI: NE, NE) Chemotherapy: 43.1 (95% CI:28.5, NE) HR: 0.24 (95% CI: 0.13–0.43)
	<i>Median OS</i> Alectinib: NE (95% CI: NE, NE) Chemotherapy: NE (95% CI: NE, NE) HR: 0.46 (95% CI: 0.08, 2.25)
	<i>Median CNS-DFS</i> Alectinib: NE (95% CI: NE, NE) Chemotherapy: NE (95% CI: NE, NE) HR: 0.22 (95% CI: 0.08-0.58)
	Stage II-IIIA subpopulation
	Median DFS Alectinib: NE (95% CI: NE, NE) Chemotherapy: 44.4 (95% CI: 27.8, NE) HR: 0.24 (95% CI: 0.13, 0.45)

	<i>Median OS</i> Alectinib: NE (95% CI: NE, NE) Chemotherapy: NE (95% CI: NE, NE) HR: 0.96 (95% CI: 0.14, 6.82) <i>Median CNS-DES</i>
	Alectinib: NE (95% CI: NE, NE) Chemotherapy: NE (95% CI: NE, NE) HR: 0.24 (95% CI: 0.09-0.65)
Most important serious adverse events for the intervention and	Pneumonia Alectinib: 2.3% Chemotherapy: 0.8%
comparator	Appendicitis Alectinib: 3.1% Chemotherapy: 0%
	Nausea Alectinib: 0% Chemotherapy: 1.7%
	Neutrophil count decreased Alectinib: 0% Chemotherapy: 1.7%
	Acute myocardial infarction Alectinib: 1.6% Chemotherapy: 0%
Impact on health- related quality of life	Equal with tendency towards improvement
Type of economic analysis that is submitted	Cost utility analysis
Data sources used to model the clinical effects	Alina Study (NCT03456076) (9)
Data sources used to model the health- related quality of life	Alina Study (NCT03456076) (9)
Life years gained	4.27 years
Quality Adjusted Life Year (QALY)s gained	3.57 QALY
Incremental costs	334,348 DKK
ICER (DKK/QALY)	93,699 DKK/QALY

Uncertainty associated with the ICER estimate	The number of patients progressing from adjuvant treatment to meta- static treatment.
Number of eligible patients in Denmark	Approximately 8-10 new patients a year (10)
Budget impact (in year 5)	3.2 mio. DKK

The patient population, intervention, choice of comparator(s) and relevant outcomes

3.1 The medical condition

Lung cancer is the most deadly cancer disease in Denmark. In 2022, 5043 Danish patients were diagnosed with lung cancer making the disease one of the most frequent cancer diseases (11, 12). More than 80% of the diagnosed patients have NSCLC and among these patients, approximately 50% have localized (stage I and II) or locally advanced (stage III) disease at the time of diagnosis. Early stage NSCLC is a potentially curative setting where complete tumor resection is still feasible (13, 14).

Early stage NSCLC cancer is typically asymptomatic, with relatively few disease-related symptoms. In Denmark it is defined that for one or more of the following symptoms in persons over 40 years of age with relevant tobacco anamnesis, lung cancer may be suspected and the doctor should consider referring to computed tomography (CT) scans with contrast of thoracic and upper abdomen (15):

- Cough of more than 4-6 weeks duration in a previously pulmonary injury person or changes in the coughing pattern of a person with chronic bronchitis
- Newly arrived shortness of breath with abnormal spirometry with no other obvious explanation for this
- Haemoptysis (regardless of age) and tobacco anamnesis
- Stridor of unknown cause should lead to CT of thoracic and upper abdomen, spirometry and laryngo-bronchoscopy
- General symptoms in the form of fatigue, lack of appetite, weight loss, thrombocytosis
- Other symptoms of lung cancer may be sputum, chest pain, pneumonia, pleural effusion, stokes collar, neuropathy, bone pain and drumstick fingers, shoulder pain

• Hoarseness of more than 3-4 weeks duration without other accompanying symptoms may be a symptom of lung cancer, however, should be examined primarily by an otologist on suspicion of larynx cancer.

In Denmark if lung cancer is suspected, the patient is referred to "lungekræft i pakkeforløb" (15, 16).

ALK-positive NSCLC

The ALK fusion oncogene is the result of fusion with another partner gene, where the Echinoderm Microtubule-associated Protein-like 4 (EML4) gene is the most common ALK fusion partner and represents a distinct subset of NSCLC (17-19). Based on evidence from patients with advanced or metastatic ALK positive NSCLC, this disease is to some degree associated with specific features such as a never- or light-smoking history, younger age, and adenocarcinoma subtype. ALK-positive NSCLC is often diagnosed at an advanced stage, and more likely to spread to the brain and lymph nodes, indicating a more aggressive tumor biology and disease outcome. Currently available evidence in resected ALK-positive NSCLC suggests similar clinical and social features to that described for advanced ALK-positive NSCLC (4, 18, 20, 21).

In 2023 Holmskov et al., (22) investigated the clinical outcomes of all ALK-positive NSCLC patients in Denmark. Patients were identified using the national pathology database and a total of 209 patients was included in the analysis independent of disease stage. Patients with stage I–IIIA disease accounted for 30% of the study population and OS was not reached (22).

Early-Stage Resected ALK-positive NSCLC

Analyses of the prognostic value of ALK in early-stage NSCLC are conflicting possibly due to small sample sizes and confounders such as the availability and choice of targeted therapy after relapse and differing baseline characteristics between ALK-positive and wild type cohorts such as smoking history (18, 19). Irrespective of the prognostic value of ALK, despite curative-intent surgery followed by conventional adjuvant chemotherapy, many ALK-positive patients will suffer cancer recurrence. Given the success of ALK inhibitor therapy in the advanced and metastatic setting, there is a strong rationale to apply this treatment in the early setting.

Disease recurrence

NSCLC is associated with poor survival even when the diagnosis is made at an early stage due to a high risk of micro metastasis (23). Disease recurrence is common in patients with early-stage NSCLC, even with adjuvant treatment. The five-year recurrence-free survival rate varies depending on the stage of the disease, ranging from 34% for stage III to 80% for stage I to II. Distant recurrence, which is more common than local recurrence, is associated with shorter survival. Patients with lung cancer often experience psychological and social symptoms, such as fear of recurrence, and advanced disease has a significant humanistic burden. Reducing the risk of recurrence and extending disease-free survival is an important goal of therapy (23).

In ALK-positive NSCLC, recurrence in the CNS is particularly prevalent, affecting 50-60% of patients. Brain metastases can cause a variety of disturbing symptoms, including headache, seizures, stroke, loss of neurologic functions from focal neurologic deficits, and considerable loss of autonomy due to neurocognitive and functional deficits. Consequently, brain metastases have a negative impact on prognosis, leading to increased morbidity and mortality, and significant impairment of quality of life. Current management involves various treatments but conventional local treatments may have limitations, and there can be acute and chronic complications. The use of new generation ALK Tyrosine Kinase Inhibitors (TKI) has shown improved control of brain metastasis. Overall, addressing disease recurrence and managing brain metastases are crucial aspects of treating NSCLC, and advancements in systemic therapies provide hope for better outcomes (9).

3.2 Patient population

The Danish patient population expected to be candidates for adjuvant alectinib is resected ALK-positive NSCLC patients with high risk of disease recurrence.

The following selection criteria define patients with high risk of disease recurrence who are included in the therapeutic indication, and are reflective of the patient population with Stage IB (tumours \geq 4 cm) – IIIA NSCLC according to the 7th Edition UICC/AJCC staging criteria:

Tumour size ≥ 4 cm; or tumours of any size that are either accompanied by N1 or N2 status; or tumours that are invasive of thoracic structures (directly invade the parietal pleura, chest wall, diaphragm, phrenic nerve, mediastinal pleura, parietal pericardium, mediastinum, heart, great vessels, trachea, recurrent lar-yngeal nerve, oesophagus, vertebral body, carina); or tumours that involve the main bronchus < 2 cm distal to the carina but without involvement of the carina; or tumours that are associated with atelectasis or obstructive pneumonitis of the entire lung; or tumours with separate nodule(s) in the same lobe or different ipsilateral lobe as the primary.

ALINA (BO40336) did not include patients who had N2 status with tumours also invading the mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve, oesophagus, vertebral body, carina, or with separate tumour nodule(s) in a different ipsilateral lobe.

In Denmark, the recommendation in the clinical guidelines is to reflex test ALK (among other mandatory biomarkers) at the primary diagnosis for adenocarcinoma plus nonsmall cell carcinoma, and where the type cannot be definitely decided (16). Further, in minutes from a DaLuPa meeting in January 2022 it is stated that reflex testing for EGFR, ALK, ROS proto-oncogene 1, receptor tyrosine kinase (ROS1), B-rapidly growing fibrosarcoma (BRAF), KRAS and Programmed Cell Death Ligand 1 (PD-L1) is recommended upfront at primary diagnosis for non-squamous NSCLC (24). This to determine suitability for treatment with immunotherapy and targeted therapies.

However, according to Danish expert and the annual lung cancer report, testing of patients in the early setting and for the adjuvant setting is not performed regularly, and testing depends on the oncology department, patient characteristics and tissue available (10, 12). The latest published yearly report by the Danish Lung Cancer Group (DLCG) from the Danish Lung Cancer Registry (DLCR), reports that 36 patients were tested ALKpositive in 2022 which corresponds to 1.6% of all patients tested for ALK (11). In 2022, 1,245 Danish lung cancer patients underwent resection (surgery exclusive explorative operations). In the same year, the five-year survival rate after surgery was assessed to be 62.9%. For patients undergoing resection at least 9 out of 10 are alive 1 year after surgery, at least 4 out of 5 are alive after 2 years (11).

The ALINA (BO40336) study is the first and only to demonstrate that an adjuvant ALK-inhibitor shows a statistically significant and clinically meaningful improvement in DFS compared with chemotherapy across patients with resected stage IB, II and IIIA ALK+ NSCLC (9). The effect of treatment with alectinib was observed in patients with resected stage IB, II and IIIA ALK-positive NSCLC.

Danish experts have stated that alectinib in the adjuvant setting could fit into the Danish practice and thereby offer a valuable benefit for Danish ALK-positive NSCLC patients with high risk of disease recurrence after surgery. They expect approximately 8-10 patients a year would be candidates for alectinib as adjuvant treatment (10).

As ALK testing and registration in patients with early stage lung cancer has not been standard practice, the incidence will be an estimate based on number of patients with early stage disease, ALK positivity rate and expert opinion. Please refer to Table 1 and Table 2.

Year	2019	2020	2021	2022	2023
Incidence in Denmark (Lung Cancer) [Ref: DLCG Årsrapport 2022]	4996	4903	5108	5043	Not pub- lished yet
Prevalence in Denmark [Nordcan]	13783	14525	15395	N/A	N/A
Number of resections (all pathologies) [Ref: DLCG Årsrapport 2022]					Not pub- lished yet
ALK positivity rate [20000 based on testing in advanced setting] [Ref: DLCG Årsrapport 2022]					Not pub- lished yet
Global prevalence*	NA	NA	NA	NA	NA

Table 1 Incidence and prevalence in the past 5 years

*Due to global difference in the prevalence of ALK it is not possible calculate exact global numbers

Table 2 Estimated number of patients eligible for treatment

Year	2024	2025	2026	2027	2028
Number of patients in Denmark who are eligible for	8	8	8	8	8
treatment in the coming years					

3.3 Current treatment options

The earlier the stage at the time of diagnosis, the better the prognosis. In Denmark early stage NSCLC is treated surgically with curative intent. For patients with stage I, NSCLC surgical treatment alone is the standard of care. For stage II-III there is a higher risk of disease recurrence and therefore resected patients in these stages are referred to the oncological departments for assessment on eligibility for adjuvant chemotherapy. Patients with stage IIA with a tumortumour diameter of > 4 cm (T2b) should also be considered referred to the oncological department (1).

The current standard adjuvant treatment in Denmark are initiated within 6-8 weeks after surgery and consists of four series of platinum doublet. This can reduce risk of micro metastases and improve survival outcomes compared to surgery alone. The standard of care is cisplatin and vinorelbine, but if the patient is not fit for cisplatin this can be substituted with carboplatin (1).

In 2021, approximately 22% of NSCLC patients undergoing surgery received adjuvant oncological treatment and it is expected that the number of patients receiving multimodal treatment in the early setting will increase in the coming years due to the expected introduction of immunotherapy (3).

3.4 The intervention

Overview of intervention (25)	
Therapeutic indication relevant for the assessment	Alecensa as monotherapy is indicated as adjuvant treatment following tumor resection for adult patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC).
Method of administration	Oral
Dosing	The recommended dose of Alecensa is 600 mg taken orally twice daily with food (total daily dose of 1200 mg).
Dosing in the health economic model (including relative dose intensity)	100%
Should the medicine be administered with other medicines?	No
Treatment duration / criteria for end of treatment	Treatment with Alecensa in the adjuvant setting should be continued until disease recurrence, unacceptable toxicity or for 2 years.
Necessary monitoring, both during administration and during the treatment period	Standard of care
Need for diagnostics or other tests (e.g. companion diagnostics). How are these included in the model?	A validated ALK assay is necessary for the selection of ALK positive NSCLC patients. ALK positive NSCLC status should be established prior to initiation of Alecensa therapy. ALK-testing of NSCLC patients is applied in the Danish prac- tice. No additional test are necessary.
Package size(s)	Aluminum/aluminum (PA/Alu/PVC/Alu) blisters containing 8 hard capsules. Pack size: 224 (4 packs of 56) hard capsules. One capsule contains 150 mg alectinib.

Alectinib is a highly selective and potent ALK tyrosine kinase inhibitor.

3.4.1 The intervention in relation to Danish clinical practice

The current adjuvant treatment algorithm for NSCLC in Denmark in currently chemotherapy, potentially follow by immunotherapy depending on PD-L1 status and lack of EFGR mutations or ALK-translocations (26). For the subset of ALK-positive NSCLC patients in Denmark, adjuvant treatment will instead be alectinib for up to 2 years. Several ALK-positive inhibitors are recommended by the Danish Medicines Council (DMC) in the advanced or metastatic setting e.g. Crizotinib, Brigatinib, Lorlatinib as well as alectinib (27). Additional information of the impact of later treatment lines depending on type of disease recurrence is described later in this application.

3.5 Choice of comparator(s)

ATC code

Overview of comparator	
Generic name	Cisplatin
ATC code	L01XA01
Mechanism of action	Cisplatin inhibits DNA synthesis by producing intrastrand and interstrand cross links in DNA. Protein and RNA synthesis are also inhibited to a lesser extent. Although the principal mech- anism of action of cisplatin appears to be inhibition of DNA synthesis, other mechanisms, including enhancement of tu- mor immunogenicity, may be involved in its antineoplastic ac- tivity. Cisplatin also has immunosuppressive, radio sensitising, and antimicrobial properties.
Method of administration	Intravenous infusion.
Dosing	A typical dose is 20 mg/m ² BSA or more when cisplatin is used in combination therapy.
Dosing in the health economic model (including relative dose intensity)	100 %
Should the medicine be admin- istered with other medicines?	Yes
Treatment duration/ criteria for end of treatment	Until the completion of the treatment period (4 cycles for chemotherapy), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurred first.
Need for diagnostics or other tests (i.e. companion diagnos- tics)	N/A
Package size(s)	10 mg/10 ml, 50 mg/50 ml and 100 mg/100 ml presentations in Type I amber glass vials and Onco-Tain vials.
	Packs contain a single vial.
Overview of comparator	
Generic name	Vinorelbine

L01CA04

Overview of comparator	
Mechanism of action	Vinorelbine is a cytostatic drug of the vinca alkaloid family. Vi- norelbine inhibits tubulin polymerisation and binds preferen- tially to mitotic microtubules, only affecting axonal microtu- bules at high concentrations. The induction of the tubulin spi- ralization is less than that produced by vincristine. Vinorelbine blocks mitosis at phase G2-M, causing cell death in interphase or at the following mitosis
Method of administration	Intravenous infusion
Dosing	Typically, 25-30 mg/m ² body surface area, administered once weekly.
Dosing in the health economic model (including relative dose intensity)	100 %
Should the medicine be admin- istered with other medicines?	Yes
Treatment duration/ criteria for end of treatment	Until the completion of the treatment period (4 cycles for chemotherapy), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurred first.
Need for diagnostics or other tests (i.e. companion diagnos- tics)	N/A
Package size(s)	1 ml of concentrate for solution for infusion : 1 vial
	5 ml of concentrate for solution for infusion : 1 vial

Overview of comparator	
Generic name	Gemcitabine
ATC code	L01BC05
Mechanism of action	Gemcitabine (dFdC), which is a pyrimidine antimetabolite, is metabolised intracellularly by nucleoside kinase to the active diphosphate (dFdCDP) and triphosphate (dFdCTP) nucleo- sides. The cytotoxic effect of gemcitabine is due to inhibition of DNA synthesis by two mechanisms of action by dFdCDP and dFdCTP. First, dFdCDP inhibits ribonucleotide reductase, which is uniquely responsible for catalysing the reactions that produce deoxynucleoside triphosphates (dCTP) for DNA syn- thesis. Inhibition of this enzyme by dFdCDP reduces the con- centration of deoxynucleosides in general and, in particular, dCTP. Second, dFdCTP competes with dCTP for incorporation into DNA (self-potentiation).
	Likewise, a small amount of gemcitabine may also be incorpo- rated into RNA. Thus, the reduced intracellular concentration of dCTP potentiates the incorporation of dFdCTP into DNA. DNA polymerase epsilon lacks the ability to eliminate gem- citabine and to repair the growing DNA strands. After gem- citabine is incorporated into DNA, one additional nucleotide is added to the growing DNA strands. After this addition there is

	essentially a complete inhibition in further DNA synthesis (masked chain termination). After incorporation into DNA, gemcitabine appears to induce the programmed cell death process known as apoptosis.
Method of administration	Intravenous infusion
Dosing	1,250 mg/m ² body surface area on Days 1 and 8 of the treat- ment cycle (21 days).
Dosing in the health economic model (including relative dose intensity)	100 %
Should the medicine be admin- istered with other medicines?	Yes, cisplatin has been used at doses between 75-100 mg/m² once every 3 weeks.
Treatment duration/ criteria for end of treatment	Until the completion of the treatment period (4 cycles for chemotherapy), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurred first.
Need for diagnostics or other tests (i.e. companion diagnos- tics)	N/A
Package size(s)	Cartons each holding 1, 5 or 10 single-dose infusion bags of 120 ml, 130 ml, 140 ml, 150 ml, 160 ml, 170 ml, 180 ml, 200 ml or 220 ml, respectively.

Overview of comparator	
Generic name	Pemetrexed
ATC code	L01BA04
Mechanism of action	Pemetrexed is a multi-targeted anti-cancer antifolate agent that exerts its action by disrupting crucial folate-dependent metabolic processes essential for cell replication.
Method of administration	Intravenous infusion
Dosing	500 mg/m ² of body surface area administered as an intrave- nous infusion over 10 minutes on the first day of each 21-day cycle.
Dosing in the health economic model (including relative dose intensity)	100 %

Should the medicine be admin- istered with other medicines?	Corticosteroid; should be given the day prior to, on the day of, and the day after pemetrexed administration. The cortico- steroid should be equivalent to 4 mg of dexamethasone ad- ministered orally twice a day.
	Vitamin supplementation; oral folic acid or a multivitamin containing folic acid (350 to 1000 micrograms) must be taken on a daily basis. At least five doses of folic acid must be taken during the seven days preceding the first dose of pemetrexed, and dosing must continue during the full course of therapy and for 21 days after the last dose of pemetrexed. Patients must also receive an intramuscular injection of vitamin B12 (1000 micrograms) in the week preceding the first dose of pemetrexed and once every three cycles thereafter. Subse- quent vitamin B12 injections may be given on the same day as pemetrexed.
Treatment duration/ criteria for end of treatment	Until the completion of the treatment period (4 cycles for chemotherapy), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurred first.
Need for diagnostics or other tests (i.e. companion diagnos- tics)	N/A
Package size(s)	Powder in Type I glass vial. Rubber stopper.
	Pack of 1 vial.

3.6 Cost-effectiveness of the comparator(s)

The comparator is a four 21-days cycles of chemotherapy. Chemotherapy as adjuvant treatment for ALK+ patients have not been evaluated by the DMC as the treatment was implemented before the existence of DMC. However, is has been the standard treatment for patients for a long time. At the same time the costs of a chemotherapy treatment regimen of four 21 days cycle are low. Thus, chemotherapy would be considered highly cost-effective, and an additional cost-effectiveness analysis of chemotherapy has not been carried out. According to the guidelines of the DMC (28).

3.7 Relevant efficacy outcomes

3.7.1 Definition of efficacy outcomes included in the application

Table 3 Efficacy outcome measures relevant for the application (9).

Outcome measure	Time point	Definition	How was the measure investigated/method of data collection
Disease-free sur- vival (DFS)	CCOD: June 26, 2023 Follow-up:	DFS is defined as the time from randomization to the first documented recurrence of disease or new primary	Kaplan-Meier methodology will be used to estimate the median DFS for each treat- ment arm, and the Kaplan-
ALINA (BO40336)	30.88	or disease of new primary	ment ann, and the Kaplan-

	months (sd: 12.71))	NSCLC or death from any cause, whichever occurs first	Meier curve will be con- structed to provide a visual de- scription of the difference be- tween the treatment and con- trol arms. Brookmeyer-Crow- ley methodology will be used to construct the 95% CI for the median DFS for each treat- ment arm
Overall survival (OS) ALINA (BO40336)	CCOD: June 26, 2023 Follow-up: 30.88 months (sd: 12.71))	OS is defined as the time from randomization to death from any cause.	Kaplan-Meier methodology will be used to estimate the median OS for each treatment arm, and the Kaplan-Meier curve will be constructed to provide a visual description of the difference between the treatment and control arms. Brookmeyer-Crowley method- ology will be used to construct the 95% CI for the median OS for each treatment arm
Time to central nervous system recurrence or death (CNS-DFS) ALINA (BO40336)	CCOD: June 26, 2023 Follow-up: 30.88 months (sd: 12.71))	CNS-DFS is defined as the time from randomization to the first documented recur- rence of disease in the CNS or death from any cause, whichever occurred first.	Same as for DFS.

Validity of outcomes

Both the primary endpoint DFS, secondary endpoint OS and exploratory endpoint CNS-DFS are validated, well established endpoints within oncology and have been assessed multiple times by DMC.

4. Health economic analysis

4.1 Model structure

A systematic literature review (SLR) was conducted to identify and summarise the modelling methods and structures that have been used to evaluate the cost-effectiveness of early-stage NSCLC interventions. The SLR identified 36 studies that conduct an economic evaluation of which only 25 studies utilise an economic model. The majority of these studies utilised a Markov model (Markov model = 17, microsimulation = 7, decision tree = 1). In terms of the structure and assumptions made, however, considerable variation exists across them (e.g. time horizon: 1 year-lifetime; cycle length: 1 month-1 year). Due to this variation, the CEA does not only leverage these past studies to inform certain aspects of the model, but also bases decisions on certain matters on what it deemed was the most appropriate choice from a clinical and economic standpoint. The CEA utilises a cohort-level semi-Markov model. In comparison to the use of a cohortlevel decision tree, the advantage of a Markov model is that the elapse of time is not implicit and cumbersome to model. This is especially an issue in the case of early-stage NSCLC where we can expect the majority of patients to survive for many years before experiencing an event. However, in comparison to an individual-level model, a limitation of a cohort-level model is that health states do not implicitly have memory on what point in time and from which health state a patient had made their transition. This prevents the model from being able to account for the history of patients in determining health state transitions, healthcare resource use and costs and quality of life. Despite this limitation, individual-level based models are more complicated mathematically and data intensive and, therefore, considered overly complex for the stated decision problem. As per the DMC guidance (28), the cost-effectiveness analysis applied a restricted Danish societal perspective, using the best available clinical and economic evidence. Local Dan-

ish data inputs were used wherever available. The current model was based on results

Figure 1 Health State Diagram of the Cost-Effectiveness Model

4.2 Model features

from the ALINA trial.

Table 4 Features of the economic model

Model features	Description	Justification
Patient population	Intent-to-treat (stage lb (tu- mour size ≥ 4cm)-IIIa ALK-pos- itive NSCLC)	Study population from ALINA (BO40336) Clinical cut-off date (CCOD): June 26, 2023 (9).
Perspective	Limited societal perspective	According to DMC guidance (28).
Time horizon	Lifetime (40 years)	To capture all health benefits and costs in line with DMC guidelines (28). Based on mean age at diagno-
		sis in the Danish population (40 years).

		Validated by Danish clinical expert.	
Cycle length	Monthly	The CEA uses a short cycle length to granularly capture transitions without half-cycle corrections.	
Half-cycle correction	No	Monthly cycle length is enough to capture differences.	
Discount rate	3.5 %	According to DMC guidance (28).	
Intervention	ALECENSA (Alectinib)		
Comparator(s)	Platinum-based chemother- apy	According to national treat- ment guidelines. Validated by Danish clinical expert (10).	
Outcomes	OS, DFS, PFS and HRQoL		

4.3 Time Horizon

The DMC method guideline states that the selected time horizon should be long enough to reflect all important differences in costs and efficacy between the technologies being compared. The model uses a lifetime horizon of 40 years, considered to represent a lifetime horizon for patients. Given the mean age of 55 years in the ALINA trial, 40 years was considered a fair approximation of a lifetime time horizon.

4.4 Perspective

The perspective of the economic model is a restricted Danish societal perspective, which includes costs related to drug acquisition, drug administration, monitoring, adverse events & supportive care. Indirect costs are not included in line with the DMC's guide-lines (28).

5. Overview of literature

5.1 Literature used for the clinical assessment

This application is based on the head-to-head study ALINA (BO40366) which compare adjuvant alectinib with platinum-based chemotherapy in patients with resected ALK-positive NSCLC. Hence, a systematic literature review has not been performed. Data from the interim analysis of ALINA (BO40366) have been published in NEJM, April 2024 (9). Details are listed in Table 5 below.

Reference (Full citation incl. reference number)*	Trial name	NCT identifier	Dates of study (Start and expected completion date, data cut-off and expected data cut-offs)	Used in comparison of*
Full paper Yi.Long W et al., Alectinib in Re- sected ALK-Posi- tive Non–Small- Cell Lung Cancer. NEJM. 2024 Apr; 390(14): 1265-	ALINA	NCT03456076	Start: 16/08/18 Completion: 19/11/26 Data cut-off: 26/06/23 Future data cut-	Adjuvant alec- tinib vs. plati- num-based chemotherapy for patients with ALK- positive NSCLC

Table 5 Relevant literature included in the assessment of efficacy and safety.

5.2 Literature used for the assessment of health-related quality of life

Health-related quality of life data was obtained from the ALINA study with the intervention and comparator of interest. See section 10.1

5.3 Literature used for inputs for the health economic model

Two SLRs has been conducted to inform the health economic analysis. One SLR to identity clinical efficacy of ALK+ treatments in NSCLC and one SLR to identity utility of subsequent treatment line. This SLRs is outlined in in appendix I and J. All external literature used in the health economic model is identified through those SLRs – expect for Danish unit costs.

Reference (Full citation incl. reference number)	Input/estim ate	Method of identification	Reference to where in the application the data is described/applied
Camidge D, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non- small cell lung cancer in the global phase III ALEX study. Journal of Thoracic Oncology. 2019:1233-43	OS and PFS in 1L Targeted lit- erature re- view	Section 8.1.2	8.2.2.3
Camidge D, Kim H, Ahn M, Yang J, Han J, Hochmair M, et al. Brigatinib versus crizotinib in ALK inhibitor–naive advanced ALK-positive NSCLC: Final results of phase 3 ALTA-1L trial. Journal of Thoracic Oncology. 2021:2091-108 (
Solomon B, Mok T, Kim D, Wu Y, Nakagawa K, Mekhail T, et al. First- line crizotinib versus chemotherapy in ALK-positive lung cancer. The New England journal of medicine. 2014:2167-77 (
Solomon B, Bauer T, Mok T, Liu G, Mazieres J, de Marinis F, et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: updated analysis of data from the phase 3, randomised, open label CROWN study. Lancet Respiratory Medicine. 2023:354-66. (30)			

Table 6 Relevant literature used for input to the health economic model

Novello S, Mazieres J, Oh I, de Castro J, Migliorino M, Helland A, et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from the phase III ALUR study. Annals of Oncology. 2018:1409-16 (31)

OS and PFS in 2L Targeted litera- 8.2.2.2.4 ture review
Nakamichi S, Horinouchi H, Asao T, Goto Y, Kanda S, Fujiwara Y, et al. Comparison of radiotherapy and chemoradiotherapy for locoregional recurrence of non-small cell lung can- cer developing after surgert. Clinical Lung Cancer. 2017 (32)	OS and PFS in non-meta- static recur- rence	Targeted litera- ture review	8.2.2.2.2
Chouaid C, Agulnik J, Goker E, et al. Health-related quality of life and util- ity in patients with advanced non- small-cell lung cancer: a prospective cross-sectional patient survey in a real-world setting. <i>J Thorac Oncol</i> . 2013 (33)	Utility value after recur- rence	Targeted litera- ture review	10.2

6. Efficacy

6.1 Efficacy of alectinib compared to platinum-based chemotherapy regimens for patients with ALK-positive early NSCLC

6.1.1 Relevant studies

ALINA (BO40336) is a phase III, global, multicenter, open-label, randomized, study comparing the efficacy and safety of alectinib versus platinum-based chemotherapy as adjuvant therapy in patients with completely resected, stage IB^DIIIA, ALK-positive NSCLC. The primary endpoint of the study is investigator^Dassessed DFS (INV-DFS). Overall survival (OS) and safety were secondary endpoints while time to CNS recurrence or death (CNS-DFS) was an exploratory endpoint.

Patients aged ≥18 years with completely resected (negative margins), histologically-confirmed, Stage IB-IIIA NSCLC, as per the Union Internationale Contre le Cancer/ American Joint Committee on Cancer 7th edition (UICC/AJCC 7th edition) (34), with documented ALK-positive disease as assessed by an FDA-approved and Conformité Européenne (CE)marked test and meeting all required eligibility criteria, were enrolled in ALINA. Eligible patients were stratified by extent of disease (stage IB [tumors ≥4 cm] vs. stage II vs. stage IIIA) and race (Asian vs. non-Asian).

Patients with Stage IB NSCLC with tumors ≥4 cm per the UICC/AJCC 7th edition classification have been shown to experience more modest benefit from adjuvant chemotherapy treatment than patients with Stage II–IIIA NSCLC; this fact was taken into consideration for recruitment capping, stratification, and statistical analysis of the primary endpoint (se details below). Screening and randomization occurred 4 to 12 weeks after patients had undergone complete surgical resection (lobectomy, sleeve lobectomy, bilobectomy, or pneumonectomy). Patients were randomized in a 1:1 fashion to receive either alectinib 600 mg orally twice a day (BID) or four 21-days cycles of one of the following platinum-based chemotherapy combinations:

- Cisplatin 75 mg/m² on Day 1 plus vinorelbine 25 mg/m² on Days 1 and 8
- Cisplatin 75 mg/m² on Day 1 plus gemcitabine 1250 mg/m² on Days 1 and 8
- Cisplatin 75 mg/m² on Day 1 plus pemetrexed 500 mg/m² on Day 1.

In case of intolerability to a cisplatin-based regimen, carboplatin was administered instead of cisplatin. Alectinib and platinum-based chemotherapy were administered until the completion of the treatment period that is 24 months for alectinib and four 21-days cycles for chemotherapy regimens, until recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurred first. Patients who completed a study treatment regimen or discontinued treatment prior to disease recurrence continued to be followed until disease recurrence. Data collection continues for each patient until death or study closure, whichever occur first. After disease recurrence, patients were treated at the discretion of the investigator according to local clinical practice. No crossover was allowed between the two arms.

Figure 2: ALINA (BO40336) study design. ALK+ - anaplastic lymphoma kinase-positive; NSCLC – non-small cell lung cancer; ECOG - Eastern Cooperative Oncology Group; BID – twice a day.

A total of 257 patients were randomized and included in the ITT population (130 in the alectinib arm and 127 in the chemotherapy arm). A total of 231 patients had stage II–IIIA NSCLC (116 patients in the alectinib arm and 115 in the chemotherapy arm). The safety-evaluable population included 248 patients who underwent randomization and received any amount of study treatment (128 in the alectinib arm and 120 in the chemotherapy arm) (Table 7).

Table 7: Number of patients in the in the alectinib and chemotherapy arm in ITT population, stage II-IIIA subpopulation and safety-evaluable population.

	Alectinib n=130	Chemotherapy n=127	All Patients n=257
Intent-to-treat patients	130	127	257
Stage II-IIIA patients	116	115	231
Safety-evaluable patients (Treatment Received)	128	120	248

In this application a pre-specified interim analysis with CCOD of June 26, 2023, is presented. The pre-specified interim analysis of INV-DFS was conducted at the CCOD, where 59 DFS events (67%) for the stage II-IIIA subpopulation and 65 DFS events for the ITT population were observed. The pre-specified DFS interim analysis was conducted by an independent Data Monitoring Committee (iDMC) and the stopping boundaries for both populations were crossed at which point the analysis became the primary analysis for the study. Data has been presented at the 36. Deutscher Krebskongress, February 2024 (35) and published by Wu Y-L et al. in New England Journal of Medicine, April 2024 (9).

Trial name, NCT- number (reference)	Study design	Study duration	Patient population	Intervention	Comparator	Outcomes and follow-up period
ALINA, NCT03456076 (9)	Phase III, global, multicenter, open- label, randomized, study of alectinib versus platinum- based chemother- apy as adjuvant therapy	Patients will re- ceive alectinib for max. 24 months follow by a follow- up period. Start: August 16, 2018 Estimated comple- tion: November 19, 2026 CCOD: June 26, 2023	Patients with com- pletely resected, stage IBIZIIIA, ALK-positive NSCLC	Alectinib 600 mg orally twice daily until completion of treat- ment period (24 months) or recurrence of disease, unaccepta- ble toxicity, with- drawal of consent or death, whichever oc- curs first.	 Platinum-based chemotherapy: Cisplatin 75 mg/m² on Day 1 every 21 days IV intravenously (IV) until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first. in combination with either of the following: Vinorelbine 25 mg/m² IV on Days 1 and 8 Q21D until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first. Gemcitabine 1250 mg/m² on Days 1 and 8 Q21D IV until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first. Pemetrexed 500 mg/m² Day 1 Q21D until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first. Pemetrexed 500 mg/m² Day 1 Q21D until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first. Pemetrexed 500 mg/m² Day 1 Q21D until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first. For participants who experience unacceptable toxicity with cisplatin, carboplatin is used. 	INV-DFS [Time Frame: from the date of randomization until the first DFS event, up to approxi- mately 5 years] OS [Time Frame: From the date of randomization until death due to any cause up to approximately 8 years] Plasma Concentration of Alectinib [Time Frame: Predose (2 hours) at Baseline, Week 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, and 96] Plasma Concentration of Alectinib metabolite [Time Frame: Predose (2 hours) at Baseline, Week 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, and 96] Percentage of participants with adverse advent [Time Frame: From the date of randomization up to approximately 2 years]

Table 8: Overview of study design for studies included in the comparison.

6.1.2 Comparability of studies

ALINA (BO40336) is a head-to-head study which provide a direct comparison of alectinib and platinum-based chemotherapy regimens.

6.1.2.1 Comparability of patients across studies

The ITT population was evenly balanced between male patients (47.9%) and female patients (52.1%), with a median patient age of 56.0 years (range: 26–87 years). Most patients (76.3%) were <65 years of age. All patients had a baseline ECOG performance status (PS) of 0 (53.3%) or 1 (46.7%), and most had never smoked (59.9%) (36). Patient demographics and baseline characteristics were generally well balanced between the alectinib and chemotherapy arms in the ITT population. Compared with the chemotherapy arm, the alectinib arm had a higher proportion of female patients (57.7% in the alectinib arm vs. 46.5% in the chemotherapy arm) and never-smokers (64.6% in the alectinib arm vs. 55.1% in the chemotherapy arm) (Table 9) (36).

Similar results were observed in the stage II-IIIA subpopulation (36).

	ALINA (BO40335)					
	Alectinib, ITT population n=130	Chemotherapy, ITT population n=127	All patients, ITT population n=257	Alectinib, subpopulation stage II-IIIA n=116	Chemotherapy, subpopulation stage II-IIIA n=115	All patients, subpopulation stage II-IIIA n=231
Median age, years (min-max)	54.0 (26-80)	57.0 (33-87)	56.0 (26-87)	54.0 (26-80)	57.0 (33-87)	56.0 (26-87)
Age group – n (%)						
< 65	103 (79.2%)	93 (73.2%)	196 (76.3%)	93 (80.2%)	84 (73.0%)	177 (76.6%)
<u>></u> 65	27(20.8%)	34 (26.8%)	61 (23.7%)	23 (19.8%)	31 (27.0%)	54 (23.4%)
Gender – n (%)	•			•		•
Female	75 (57.7%)	59 (46.5%)	134 (52.1%)	66 (56.9%)	53 (46.1%)	119 (51.5%)
Male	55 (42.3%)	68 (53.5%)	123 (47.9%)	50 (43.1%)	62 (53.9%)	112 (48.5%)
Race						
Asian	72 (55.4%)	71 (55.9%)	143 (55.6%)	68 (58.6%)	68 (59.1%)	136 (58.9%)
Non-Asian	58 (44.6%)	56 (44.1%)	114 (44.4%)	48 (41.4%)	47 (40.9%)	95 (41.1%)
ECOG PS at baseling	ECOG PS at baseline					
0	72 (55.4%)	65 (51.2%)	137 (53.3%)	63 (54.3%)	61 (53.0%)	124 (53.7%)
1	58 (44.6%)	62 (48.8%)	120 (46.7%)	53 (45.7%)	54 (47.0%)	107 (46.3%)
Tobacco use history	y					

Table 9 Baseline characteristics of patients in studies included for the comparative analysis of efficacy and safety (36).

	ALINA (BO40335)					
	Alectinib, ITT population n=130	Chemotherapy, ITT population n=127	All patients, ITT population n=257	Alectinib, subpopulation stage II-IIIA n=116	Chemotherapy, subpopulation stage II-IIIA n=115	All patients, subpopulation stage II-IIIA n=231
Never	84 (64.6%)	70 (55.1%)	154 (59.9%)	76 (65.5%)	63 (54.8%)	139 (60.2%)
Current	5 (3.8%)	3 (2.4%)	8 (3.1%)	5 (4.3%)	3 (2.6%)	8 (3.5%)
Previous	41 (31.5%)	54 (42.5%)	95 (37.0%)	35 (30.2%)	49 (42.6%)	84 (36.4%)
Initial diagnosis sta	ging per AJCC 7th edi	ition				
Stage IB	14 (10.8%)	12 (9.4%)	26 (10.1%)	N/A	N/A	N/A
Stage II	47 (36.2%)	45 (35.4%)	92 (35.8%)	47 (40.5%)	45 (39.1%)	92 (39.8%)
Stage IIIA	69 (53.1%)	70 (55.1%)	139 (54.1%)	69 (59.5%)	70 (60.9%)	139 (60.2%)
Primary tumor stag	e per AJCC 7th editio	'n	•	•	•	·
T1a	30 (23.1%)	37 (29.1%)	67 (26.1%)	30 (25.9%)	36 (31.3%)	66 (28.6%)
T1b	21 (16.2%)	22 (17.3%)	43 (16.7%)	21 (18.1%)	22 (19.1%)	43 (18.6%)
T2a	59 (45.4%)	47 (37.0%)	106 (41.2%)	46 (39.7%)	38 (33.0%)	84 (36.4%)
T2b	4 (3.1%)	10 (7.9%)	14 (5.4%)	4 (3.4%)	8 (7.0%)	12 (5.2%)
Т3	15 (11.5%)	8 (6.3%)	23 (8.9%)	14 (12.1%)	8 (7.0%)	22 (9.5%)
Т4	1 (0.8%)	3 (2.4%)	4 (1.6%)	1 (0.9%)	3 (2.6%)	4 (1.7%)
Regional lymph no	de stage	-				
NO	21 (16.2%)	18 (14.2%)	39 (15.2%)	8 (6.9%)	10 (8.7%)	18 (7.8%)
N1	45 (34.6%)	43 (33.9%)	88 (34.2%)	44 (37.9%)	40 (34.8%)	84 (36.4%)
N2	64 (49.2%)	66 (52.0%)	130 (50.6%)	64 (55.2%)	65 (56.5%)	129 (55.8%)

ALINA (BO40335)						
	Alectinib, ITT population n=130	Chemotherapy, ITT population n=127	All patients, ITT population n=257	Alectinib, subpopulation stage II-IIIA n=116	Chemotherapy, subpopulation stage II-IIIA n=115	All patients, subpopulation stage II-IIIA n=231
Nodal assesment						
Mediastinal lymph node dissection (MLND)	108 (83.1%)	105 (82.7%)	213 (82.9%)	-	-	-
Lymph node (LN) sampling conduc- tion	19 (14.6%)	15 (11.8%)	34 (13.2%)	-	-	-
MLND and LN sampling not per- formed	3 (2.3%)	7 (5.5%)	10 (3.9%)	-	-	-
Histology						
Squamous	6 (4.6%)	3 (2.4%)	9 (3.5%)	5 (4.3%)	2 (1.7%)	7 (3.0%)
Non-Squamous	124 (95.4%)	124 (97.6%)	248 (96.5%)	111 (95.7%)	113 (98.3%)	224 (97.0%)
Surgical procedure						
Lobectomy	126 (96.9%)	117 (92.1%)	243 (94.6%)	-	-	-
Sleeve lobectomy	0	1 (0.8%)	1 (0.4%)	-	-	-
Bilobectomy	2 (1.5%)	5 (3.9%)	7 (2.7%)	-	-	-
Pneumonectomy	2 (1.5%)	4 (3.1%)	6 (2.3%)	-	-	-

6.1.3 Comparability of the study population(s) with Danish patients eligible for treatment

Table 10 Characteristics in the relevant Danish population and in the health economic model

	Value in Danish population (22)	Value used in health economic model (9)
Age (Median, average)	64.6, 61.6 years	54.9 year
Gender (female)	56.5 %	52.1 %
Patient weight (average)	No available	69.63 kg
Patient height (average)	No available	165.80

6.1.4 Efficacy - results per ALINA

In the following section, a summary of the key efficacy findings for ALINA (BO40336) is presented.

Data on the following efficacy endpoints have been extracted:

- Disease-free survival (DFS)
- Overall survival (OS)
- Time to central nervous system recurrence or death (CNS-DFS)

For each outcome, data is presented for the $\ensuremath{\mathsf{ITT}}$ population and the subpopulation with stage II-IIIA disease.

Disease assessments were conducted at baseline and every 12 weeks for the first 2 years, every 24 weeks for years 3 through 5, and then annually until the occurrence of disease recurrence, death, loss to follow-up, withdrawal of consent, or study closure, whichever occurred first.

Disease-free survival

The primary endpoint in ALINA was DFS as assessed by the investigator in patients with completely resected stage IB-IIIA, ALK-positive NSCLC. DFS was first tested in the subpopulation of patients with stage II-IIIA. If alectinib significantly prolonged DFS in this subpopulation, then DFS would be tested in the ITT population.

DFS was defined as the time from randomization to the first documented recurrence of disease or new primary NSCLC as determined by the investigator through use of an integrated assessment of radiographic data, biopsy sample results (if clinically feasible), and clinical status or death from any cause, whichever occurs first. DFS as a surrogate for OS

is an accepted endpoint for drug approval by both the EMA and the FDA, as demonstrated with the approval of immune checkpoint inhibitors for adjuvant treatment of several solid tumors, including melanoma, renal cell carcinoma and muscle-invasive bladder cancer (37). DFS is the endpoint in most studies in early NSCLC (38).

Values of DFS are Kaplan-Meier estimates with 95% CI computed using the method of Brookmeyer and Crowley. Hazard ratios were estimated by Cox regression.

In the stage II-IIIA subpopulation, 14 patients (12.1%) in the alectinib arm and 45 patients (39.1%) in the chemotherapy arm had experienced disease recurrence or death. The primary endpoint of INV-DFS was met at the pre-specified interim analysis.

The stratified HR was 0.24 (95% CI: 0.13, 0.45), which corresponds to a 76% relative risk reduction of disease recurrence or death with alectinib compared to chemotherapy.

The median DFS was not reached in the alectinib arm and was 44.4 months (95% CI: 27.8, NE) in the chemotherapy arm.

Figure 3: Kaplan-Meier plot of disease-free survival in Subgroup of patients with Stage IB.

Figure 4 Kaplan-Meier plot of disease-free survival in Subgroup of patients with Stage II.

Figure 5 Kaplan-Meier plot of disease-free survival in Subgroup of patients with Stage IIIA.

DFS by disease stage	Alectinib	Chemotherapy	
Stage IB, n	14	12	
DFS HR* (95% CI)	0.21 (0.	02, 1.84)	
2-year DFS rate (95% CI), %	92.3 (77.8, 100)	71.6 (44.2 98.9)	
3-year DFS rate (95% CI), %	92.3 (77.8, 100)	61.4 (31.5, 91.3)	
Stage II, n	47	45	
DFS HR* (95% CI)	0.24 (0.09, 0.65)		
2-year DFS rate (95% CI), %	95.6 (89.5, 100)	66.3 (51.7, 81.0)	
3-year DFS rate (95% CI), %	86.3 (72.8, 99.9)	59.5 (43.5, 75.4)	
Stage IIIA, n	69	70	
DFS HR* (95% CI)	0.25 (0.12, 0.53)		
2-year DFS rate (95% CI), %	92.7 (86.4, 98.9)	60.7 (47.9, 73.5)	
3-year DFS rate (95% CI), %	90.3 (82.7, 97.9)	48.6 (33.8, 63.4)	

Table 11 Summary Table of Disease-Free Survival in Subgroups of Patients (39).

*Unstratified analysis. Confidence interval widths have not been adjusted for multiplicity and may not be used in place of hypothesis testing.

Figure 6: Kaplan-Meier plot of disease-free survival in the subpopulation of patients with stage II-IIIA disease.

The Kaplan-Meier curves began to separate at approximately 3 months after randomization in favor of the alectinib arm and the separation was maintained thereafter. A higher proportion of patients were alive and disease-free in the alectinib arm when compared to the chemotherapy arm at 2 years (93.8% [95% CI: 89.36, 98.25] vs. 63.0% [95% CI: 53.33, 72.68], respectively), and at 3 years (88.3% [95% CI: 80.83, 95.83] vs. 53.3% [95% CI: 42.34, 64.16], respectively).

Following, this analysis as alectinib significantly prolonged DFS in the stage II–IIIA subpopulation, DFS was tested in the ITT population.

In the ITT population, 15 patients (11.5%) in the alectinib arm and 50 patients (39.4%) in the chemotherapy arm had experienced disease recurrence or death. The primary endpoint of INV–DFS was met at the pre-specified interim analysis. The stratified HR was 0.24 (95% CI: 0.13, 0.43), which corresponds to a 76% relative risk reduction of disease recurrence or death with alectinib compared to chemotherapy.

The median DFS was not reached in the alectinib arm and was 41.3 months (95% CI: 28.5, NE) in the chemotherapy arm.

Figure 7: Kaplan-Meier plot of disease-free survival in the ITT population (stage IB-IIIA).

The Kaplan-Meier curves began to separate at approximately 3 months after randomization in favor of the alectinib arm and the separation was maintained thereafter. A higher proportion of patients were alive and disease-free in the alectinib arm when compared to the chemotherapy arm at 2 years (93.6% % [95% CI: 89.38, 97.91] vs. 63.7% [95% CI: 54.59, 72.90], respectively), and at 3 years (88.7% [95% CI: 81.76, 95.63] vs. 54.0% % [95% CI: 43.73, 64.21], respectively).

Conclusively, a significant DFS benefit was observed with alectinib vs chemotherapy in both the ITT population and stage II-IIA subpopulation.

Overall survival

OS defined as the time from randomization to death from any cause was a secondary endpoint in ALINA. OS are Kaplan-Meier estimates with 95% CI computed using the method of Brookmeyer and Crowley. Hazard ratios were estimated by Cox regression. Data for the secondary endpoint of OS was immature with a low event-to-patient ratio at the CCOD with the median OS not being reached.

In the stage II-IIA subpopulation, there were 2 deaths (1.7%) in the alectinib arm vs. 2 deaths (1.7%) in the chemotherapy arm. The stratified HR was 0.96 (95% CI: 0.14, 6.82).

In the ITT population, there were 2 deaths (1.5%) in the alectinib arm vs. 4 deaths (3.1%) in the chemotherapy arm.

. The stratified HR was 0.46 (95% CI: 0.08,

2.52) (36).

Figure 9: Kaplan-Meier plot of overall survival in the ITT population (stage IB-IIA).

Conclusively, OS was immature at the interim analysis with CCOD June 26, 2023.

Correlation between DFS and OS

Using three different models the surrogacy relationship between DFS and OS was explored. The following models have been used: linear regression, Daniel and Hughes model and bivariate random effect meta-analysis (40). The analysis included data from 29 clinical studies (40). In the analysis it is concluded that early benefits observed on DFS is a good way to predict an OS benefit as well (40). In addition West et al showed in a retrospective observational study that post-surgery real world DFS was significantly correlated with OS in patients with early-stage NSCLC (41). The study was based on data from the SEER-medicare linked data from the United States. Patients was diagnosed with stage IB-IIIA NSCLC from 2007-2019 and who underwent surgery for primary lung cancer with or without adjuvant chemotherapy and who did not receive chemotherapy in the neoadjuvant setting or adjuvant radiotherapy was included. The statistical comparisons in the study were performed with the t-test for continuous variables and the chi-square test for categorical variables for both cohorts, respectively. Using Kaplan-Meier curves OS was described and compared between the recurrence and non-recurrence cohorts with the log-rank test (41). For each landmark time point recurrence was associated with significantly shorter OS than for the cohort without recurrence. The study concludes that recurrence is associated with a significant higher risk of death than the recurrence free cohort

Time to central nervous system recurrence or death (CNS-DFS)

The exploratory endpoint of time to CNS recurrence or death was defined as the time from randomization to the first documented recurrence of disease in the CNS or death from any cause, whichever occurred first. Patients who were not reported as experiencing disease recurrence in the CNS or death were to be censored at the date of the last disease assessment. The same methodology used for DFS was applied for CNS-DFS.

In the subpopulation of patients with stage II-IIA disease, CNS-DFS showed clinically meaningful prolongation of CNS-DFS with alectinib compared to chemotherapy. A higher proportion of 16 (13.9%) patients in the chemotherapy arm had experienced CNS recurrence or death compared to 5 patients (4.3 %) in the alectinib arm, with a stratified HR of 0.24 (95% CI: 0.09, 0.65). A higher proportion of patients were alive and disease-free in

the CNS in the alectinib arm compared to the chemotherapy arm at 2 years (98.18% [95% CI: 95.69, 100.00] vs. 85.01% [95% CI: 77.36, 92.66], respectively), and at 3 years (95.02% [95% CI: 90.07, 99.97] vs. 80.15% [95% CI: 70.42, 89.89], respectively).

Figure 10: Kaplan-Meier plot of time to CNS recurrence or death, in the subpopulation (stage II-IIA).

In the ITT population, CNS-DFS showed clinically meaningful prolongation of CNS-DFS with alectinib compared to chemotherapy. A higher proportion of 18 patients (14.2%) in the chemotherapy arm had experienced CNS recurrence or death compared to 5 patients (3.8%) in the alectinib arm, with a stratified HR of 0.22 (95% Cl: 0.08, 0.58). 4 and 18 patients had CNS recurrence in the alectinib arm and chemotherapy arm, respectively, while 1 and 4 patients died in the alectinib arm and chemotherapy arm, respectively. A higher proportion of patients were alive and disease-free in the CNS in the alectinib arm compared to the chemotherapy arm at 2 years (98.4% [95% Cl: 96.11, 100.00] vs. 85.8% [95% Cl: 78.83, 92.82], respectively), and at 3 years (95.5% [95% Cl: 90.99, 99.99] vs. 79.7% [95% Cl: 70.44, 89.03], respectively).

Figure 11: Kaplan-Meier plot of time to CNS recurrence or death in the ITT population (stage IB-IIA).

Conclusively, alectinib demonstrated improved CNS-DFS benefit in the ITT population and the stage II-IIA subpopulation as compared with the chemotherapy.

7. Comparative analyses of efficacy

ALINA (BO40336) is a head-to-head study which provide a direct comparison of alectinib and platinum-based chemotherapy regimens.

7.1.1 Results from the comparative analysis

Comparative results for both the ITT and stage II-IIIA subpopulation in ALINA (BO40336) are presented below (Table 12) (36).

Table 12 Results from the comparative analysis of alec	tinib vs. platinum-based chemotherapy
for patients with ALK-positive early NSCLC	

Outcome measure	Alectinib (N=130) ITT population	Chemotherapy (N=127) ITT population	Result
Median DFS	NE (95% CI: NE, NE)	41.3% (95% Cl: 28.5, NE)	Stratified HR: 0.24 (95% CI: 0.13, 0.43)
2 year DFS rate	93.6% (95% CI: 89.38, 97.91)	63.7% (95% CI: 54.59, 72.90)	N/A
3 year DFS rate	88.7% (95% Cl: 81.76, 95.63)	54.0% (95% Cl: 43.73, 64.21)	N/A
os	NE (95% CI: NE, NE)	NE (95% CI: NE, NE)	Stratified HR: 0.46 (95% CI: 0.08, 2.52)

Outcome measure	Alectinib (N=130) ITT population	Chemotherapy (N=127) ITT population	Result
2 year CNS-DFS rate	98.4% (95% CI: 96.11, 100.00)	85.8% (95% CI: 78.83, 92.82)	N/A
3 year CNS-DFS rate	95.5% (95% CI: 90.99, 99.99)	79.7% (95% CI: 70.44, 89.03)	N/A

Outcome measure	Alectinib (N=116) Stage II-IIIA subpopu- lation	Chemotherapy (N=117) Stage II-IIIA subpopula- tion	Result
Median DFS	NE (NE, NE)	44.4% (27.8, NE)	0.24 (0.13, 0.45)
2 year DFS rate	93.8% (95% CI:89.36, 98.25)	63.0% (95% CI:53.33, 72.68)	N/A
3 year DFS rate	88. 3% (95% CI:80.83, 95.83)	53.3% (95% CI:42.34, 64.16)	N/A
os	NE (95% CI: NE, NE)	NE (95% CI: NE, NE)	Stratified HR: 0.96 (95% CI: 0.14, 6.82).
2 year CNS-DFS rate	98.18% (95% CI: 95.69, 100.00)	85.01% (95% CI: 77.36, 92.66)	N/A
3 year CNS-DFS rate	95.02% (95% CI: 90.07, 99.97)	80.15% (95% Cl: 70.42, 89.89)	N/A

8. Modelling of efficacy in the health economic analysis

8.1 Presentation of efficacy data from the clinical documentation used in the model

8.1.1 Extrapolation of efficacy data – Adjuvant treatment

The treatment regimens and proportion of patients treated with each regimen in the alectinib and chemotherapy arms are informed with evidence from ALINA. Patients in the alectinib arm were only treated with alectinib whereas those in the chemotherapy arm were treated with one of three cisplatin-based regimens but could substitute carboplatin for cisplatin if required. For simplicity, all patients who switched from cisplatin to carboplatin in the trial were assumed to initiate treatment on carboplatin within the model. Table 13 provides an overview of the adjuvant treatment assumptions utilised in the model.

	Intervention	Control Arm		
Treatment	Arm	Option 1	Option 2	Option 3
Market Share	100.0%	19.2%	0.8%	80.0%
Drug 1	Alectinib	Cisplatin	Cisplatin	Cisplatin
	(N = 128)	(N = 23)	(N = 1)	(N = 96)
Administration	Oral	Intravenous	Intravenous	Intravenous
Dose size	8 x 150 mg cap- sules	75 mg/m ²	75 mg/m ²	75 mg/m ²
Treatment dura- tion	24 months	4 cycles	4 cycles	4 cycles
Time between doses	1 day	3 weeks	3 weeks	3 weeks
Days of dose re- ceived	n/a	Day 1	Day 1	Day 1
Drug 2	n/a	Vinorelbine (N = 23)	Gemcitabine (N = 1)	Pemetrexed (N = 96)
Administration	n/a	Intravenous	Intravenous	Intravenous
Dose Size	n/a	25 mg/m ²	1250 mg/m ²	500 mg/m ²
Treatment dura- tion	n/a	4 cycles	4 cycles	4 cycles
Time between doses	n/a	3 weeks	3 weeks	3 weeks
Days of dose re- ceived	n/a	Days 1, 8	Days 1, 8	Day 1
Drug 3	n/a	Carboplatin (N = 2)	Carboplatin (N = 0)	Carboplatin (N = 12)
Proportion who switched from Cisplatin to Car- boplatin	n/a	8.7%	0.0%	12.5%
Administration	n/a	Intravenous	Intravenous	Intravenous
Dose Size	n/a	150 mg·AUC	150 mg·AUC	150 mg·AUC
Treatment dura- tion	n/a	4 cycles	4 cycles	4 cycles
Time between doses	n/a	3 weeks	3 weeks	3 weeks
Days of dose re- ceived	n/a	Day 1	Day 1	Day 1

Table 13 Adjuvant Treatment (ALINA; Safety-Evaluable Patients; CCOD June 26, 2023)

8.1.2 Extrapolation of efficacy data - Treatment after recurrence

An SLR (attached to the submission) was conducted on the treatment patterns of patients with ALK-positive advanced NSCLC to identify evidence that could assist it in informing the treatment patterns assumed within the model. Specifically, the SLR aimed to consolidate information on:

- the proportion of patients who receive treatment after experiencing recurrence by health state;
- the four most commonly used treatment options that are used to treat recurrence by health state.

The SLR was conducted as ALINA does not systematically collect data on treatments received by patients after experiencing recurrence, thus, limiting its reliability. The SLR identified 23 studies that provide evidence on the matter but all studies identified came with major limitations. None of the studies focused solely on patients who experienced recurrence nor separate patients with de novo diagnosed locally advanced and metastatic NSCLC. Therefore we investigated local Danish guidelines together with discussions with a clinical expert (28) to gain a better understanding of treatment patterns after nonmetastatic and metastatic recurrence.

8.1.3 Extrapolation of efficacy data - Non-metastatic recurrence

The SLR did not identify any studies studying treatment patterns after non-metastatic recurrence. Table 14 summarizes the insights gained from discussions with the clinical expert together with local guidelines on what proportion of patients receive treatment after non-metastatic recurrence following adjuvant treatment with platinum-based chemotherapy, and if we can expect the market shares to differ for patients who are treated with adjuvant alectinib versus chemotherapy.

Table 14 Non-metastatic recurrence treatment

Proportion of Pa- tients who receive Treatment	Treatment	Comment

The CEA informs the proportion of patients who receive treatment with the highest of the range (80%) and considers chemoradiotherapy as the only treatment option in the non-metastatic recurrence health state. Additionally, chemoradiotherapy as the only non-metastatic treatment option was deemed appropriate by HTA bodies within the CEA for adjuvant atezolizumab in a similar indication (CADTH, 2022; NICE, 2022).

Table 15 Definition of Treatment after Non-Metastatic Recurrence

Proportion of Patients who receive Treatment (28)	80%
Treatment Regimen by Option	Option 1
Market Share – Alectinib Arm	100%
Market Share – Chemotherapy Arm	100%
Drug 1	Cisplatin
Administration	Intravenous
Dose Size	75 mg/m ²
Treatment duration	4 cycles
Time between doses	3 weeks
Days of dose received	Day 1
Drug 2	Pemetrexed
Administration	Intravenous
Dose Size	500 mg/m ²
Treatment duration	4 cycles
Time between doses	3 weeks
Days of dose received	Day 1
Radiotherapy Inclusion	Yes
Treatment dose (Gy)	66
Dose per fraction (Gy)	2
Fractions per week	5

8.1.4 Extrapolation of efficacy data - Metastatic recurrence

The SLR did not identify any studies studying treatment patterns after non-metastatic recurrence. Table 16 summarizes the insights gained from discussions with the clinical expert together with local guidelines on what proportion of patients receive treatment after non-metastatic recurrence and if we can expect the market shares to differ for patients who are treated with adjuvant alectinib versus chemotherapy.

Table 16 Metastatic recurrence treatment

Line of treat- ment	Proportion of Pa- tients who re- ceive Treatment	Treatment	Comment	
1 st Line				
2 nd Line				

After disease progression during treatment with an ALK-positive inhibitor, a different ALK-positive inhibitor should be used. If disease progression is seen shortly after completion of the two year ALK-positive inhibitor treatment, a TKI re-challenge will be initiated with the same treatment if it's been tolerated by the patient (28).

Table 17 Definition of First-Line Metastatic Treatment

Treatment Regimen by Option	Option 1	Option 2	Option 3	Option 4
Market Share – Alectinib Arm (relapse within 24 months)	0%	0%	100%	0%
Market Share – Alectinib Arm (relapse after 24 months)	0%	0%	100%	0%
Market Share – Chemotherapy Arm	0%	0%	100%	0%
Drug 1	Alectinib	Crizotinib	Brigatinib	Lorlatinib
Administration	Oral	Oral	Oral	Oral
Dose size	8 x 150 mg cap- sules	2 x 250 mg tablets	1 x 180 mg tablet	4 x 25 mg tablets
Treatment duration	Unlimited	Unlimited	Unlimited	Unlimited
Time between doses	1 day	1 day	1 day	1 day

Table 18 Definition of Second-Line Metastatic Treatment

Treatment Regimen by Option	Option 1	Option 2	Option 3	
Market Share – Alectinib Arm	100%	0%	0%	
Market Share – Chemotherapy	100%	0%	0%	
Arm	10078	078	070	
Drug 1	Alectinib	Ceritinib	Cisplatin	
Administration	Oral	Oral	Intravenous	
Doso sizo	8 x 150 mg	5 x 150 mg tablete	75 mg/m²	
Dose size	capsules	5 X 150 Hig tablets	/ 5 mg/m-	
Treatment duration	Unlimited	Unlimited	Unlimited	
Time between doses	1 day	1 day	21 days	
Days dose received during each	n/a	n/a	1	
cycle	n/a	n/a	I	
Drug 2	n/a	n/a	Pemetrexed	
Administration	n/a	n/a	Intravenous	
Dose Size	n/a	n/a	500 mg/m ²	
No. of Cycles	n/a	n/a	Unlimited	
Weeks between Cycles	n/a	n/a	21 days	

Days dose received during each cycle	n/a	n/a	1
--------------------------------------	-----	-----	---

8.2 Presentation of efficacy data from data from the clinical documentation used in the model

8.2.1 Disease-Free Survival

Figure 12 presents the Kaplan-Meier estimates of investigator-assessed DFS by treatment arms of the ALINA study. Based on the latest CCOD, this data is only available up to approximately month 50. The results from parametric survival analyses are used to project DFS to months not observed in the ALINA study. The parametric survival analysis pools patients across study arms but includes a covariate to capture what arm patients are in to model the effect of adjuvant alectinib on the location parameters of the distributions that it uses. This approach is appropriate in comparison to conducting the analysis separately by arm as we cannot conclude that the proportional hazard (PH) assumption is violated. Figure 13 presents the log-cumulative hazard plot of investigator-assessed DFS and

Figure 14 presents a Schoenfeld test which support this conclusion.

Figure 12 Kaplan-Meier Estimates – Investigator-Assessed DFS (ALINA; CCOD: June 26, 2023)

ALE=alectinib, CHT=chemotherapy

D: June 26, 2023)

Figure 14 Schoenfeld Residuals – Investigator-Assessed DFS (ALINA; CCOD: June 26, 2023)

8.2.1.1 Types of Disease-Free Events

Patients can experience non-metastatic recurrence, metastatic recurrence or death while disease-free. Table 19 presents the number of patients who experienced each type of event from ALINA for the alectinib arm, chemotherapy arm, and pooled across arms. Notable differences appear to exist across arms. The CEA informs the proportion of patients who experience each type of event based on the arm specific data.

DFS Event	Alectinib Arm	Chemotherapy Arm	Pooled Across Arms
Total Events	14	50	64
Death	0 (0.00%)	1 (2.00%)	1 (1.56%)
Non-metastatic Recurrence	9 (64.28%)	22 (44.00%)	31 (48.43%)
Metastatic Recurrence	5 (35 72%)	27 (54 00%)	32 (50.01%)

Table 19 Type of Disease-Free Survival Events (ALINA, CCOD: June 26, 2023)

8.2.2 Extrapolation of efficacy data

8.2.2.1 Extrapolation of DFS

Figure 15 and Figure 16 presents the projected INV-DFS using a series of parametric distributions. A decision on which parametric distribution to use is based on the fit of each projection to the observed data and the clinical validity of the long-term projections. Table 20 presents the Akaike Information (AIC) and Bayesian Information Criterion (BIC) scores for the different models where a lower score indicates a better fit. The scores indicate that the model assuming that INV-DFS follows a log-logistic distribution appears to provide the best fit to the observed data. In order to confirm the clinical validity of the long-term projections, an SLR was conducted on the efficacy and safety of early-stage NSCLC interventions with an expectation to capture evidence on longer-term DFS. A summary of the evidence that the SLR identified can be found in Appendix D. It shows that the proportion of stage IB-IIIA patients who were treated with chemotherapy and continue to be disease-free at 5 years appears to vary between 23-59%. Given that these studies do not focus on ALK-positive patients, discussions were held with TAEs. The discussions concluded that in the absence of evidence, it cannot be determined what proportion of patients will be disease-free in the long-term. Thus, the choice of projection is based on the AIC and BIC, leading to the use of the log-logistic model Figure 17.

Figure 15 Alectinib arm parametric distributions

Projected Investigator-Assessed DFS by Parametric Survival Model (ALINA; CCOD: June 26, 2023)

Figure 16 Chemotheraphy arm parametric distributions

Projected Investigator-Assessed DFS by Parametric Survival Model (ALINA; CCOD: June 26, 2023)

Figure 17 Projected Investigator-Assessed DFS with Log-Logistic Parametric Survival Model (ALINA; CCOD: June 26, 2023)

ALE=alectinib, CHT=chemotherapy

Table 20 AIC and BIC Scores of Parametric Survival Models of Investigator-Assessed DFS (ALINA; CCOD: June 26, 2023)

Distribution	AIC (Rank)	BIC (Rank)
Exponential	712.1 (6)	719.2 (2)
Weibull	709.9 (3)	720.5 (4)
Log-logistic	707.8 (1)	718.5 (1)
Log-normal	711.1 (5)	721.7 (5)

Gompertz	712.4 (7)	723.0 (6)
Generalised Gamma	710.6 (4)	724.8 (7)
Gamma	709.2 (2)	719.9 (3)

8.2.2.1.1 Adjustments to Disease-Free Survival

Cure adjustment

The median follow-up of ALINA is around 32 months. As most recurrences occur within 5 years, the DFS projections outlined in the previous section can underestimate long-term DFS (42). In order for the CEA to deal with this issue, it allows patients to be considered cured (i.e. not experience recurrence or disease related death) if they are disease-free for five years (28).

An SLR was conducted on the conditional DFS of patients who underwent resection for early-stage NSCLC in an attempt to identify evidence that could assist in informing what proportion of patients may continue to experience recurrence or disease-related death after being disease-free for some time. The SLR identified one study that shows that conditional 5-year DFS for 3 years is 91% for patients with disease stage IB or less and 83% for patients with disease stage II or greater (43).

Mortality adjustment

The CEA uses Danish lifetables from the DMC guidance (28). It can adjust the probabilities to account for the fact that lung cancer survivors may have more comorbidities than the general population and, thus, realize a greater probability of all-cause death. To identify evidence on this matter, an SLR was conducted on the relative survival of patients who had underwent resection for early-stage NSCLC. The SLR identified one study that provides evidence on conditional 5-year relative survival and shows that it may decrease with disease stage Table 21. A limitation with this study is that it focuses on patients solely from South Korea and it is unclear what proportion of their sample are ALK-positive. Discussions were held with a Canadian board of experts to validate the evidence from which it was concluded that ALK-positive patients who are considered cured may confront a similar probability of death as an age- and sex-adjusted individual from the general population (44). As patients with ALK-positive NSCLC are typically non-smokers, the TAEs considered these patients less likely to develop comorbidities in comparison to patients with other types of lung cancer. Thus, the CEA assumes that patients who are considered cured after year 5 confront a similar probability of death as someone from the general population. The CEA also applies this probability of death to non-cured patients across all health states if it leads to a higher proportion of them transitioning to death to avoid the situation where the estimates indicate that more individuals die in the general population than in the population of interest (45).

Table 21 Mortality Adjustment

Study	Country	Results
		Conditional relative survival - 5-year survival conditional on 5
		years disease-free after surgery
(Shin, et al.,	South Ko-	
2021)(46)	rea	Stage I (year 5): 90%
		Stage II (year 5): 78%
		Stage III (year 5): 61%
		Conditional relative survival - 5-year survival conditional on 5
		years disease-free after surgery
TAEs	n/a	
TAES	n/ a	TAE 1: 100%
		TAE 2: 100%
		TAE 3: <100%

Figure 18 Projected Investigator-Assessed DFS with Log-Logistic Parametric Survival Model and Cure and Mortality (ALINA; CCOD: June 26, 2023)

8.2.2.2 Extrapolation of PFS & OS

8.2.2.2.1 Progression after recurrence

An SLR was conducted on the efficacy and safety of interventions for ALK-positive NSCLC to identify evidence that could assist it in informing the progression free-survival (PFS) and OS of patients who do or do not treat after relapsing. This is because ALINA does not systematically collect data on disease progression after first recurrence. As the study does not have access to the individual patient data (IPD) of the studies that it has identified with the SLRs, it must produce approximated datasets by digitising the Kaplan-Meier estimates of PFS and OS and transforming them to IPD (47). Alike the analysis of DFS, the results from parametric survival analyses are used to produce the output that it needs to project the outcomes across time. While several analyses are conducted, where the outcomes of interest follow several distributions, the CEA uses the results from the analyses that assume that the outcomes follow an exponential distribution to model PFS and OS. This restricts the transition probabilities to being time-invariant. However, the CEA uses the abovementioned mortality adjustment if it leads to a higher proportion of patients transitioning to death.

An advantage of the former restriction is that it simplifies the CEA. As there is a continuous flow of patients into the non-metastatic and metastatic recurrence health states, the analysis would have had to consist of several tunnel states to allow the transitions to be time-variant. A limitation of this restriction is that if it is not appropriate from a statistical or clinical standpoint, it can lead to the analysis incorrectly modelling the amount of time that a patient remains in these health states. However, a recent comparison of these approaches concluded that significant differences in the transition probabilities appear at months when most patients have already experienced an event, thus, limiting any potential bias.

8.2.2.2.2 Non-metastatic Recurrence

The SLR did not identify any studies that study the PFS of patients after non-metastatic recurrence or with locally advanced NSCLC who received chemoradiotherapy. Thus, the study pragmatically reviewed the Canadian adaptation of the cost-effectiveness analysis of adjuvant atezolizumab for the treatment of early-stage NSCLC to identify sources that it could use (48). It identified a study on the PFS of patients with stage I-III NSCLC after complete resection who experienced locoregional recurrence and were treated with chemoradiotherapy (32). A limitation of this study is that it does not focus on ALK-positive NSCLC patients treated with adjuvant therapy, and uses a sample of patients who

are from Japan. Figure 19 presents the projected PFS. Based on the AIC/BIC, the log-normal parametric survival model provides the best fit of modelled to observed PFS despite the use of the exponential model.

The SLR did not identify any studies that study the PFS or OS of patients who do not receive any treatment. Thus, the study pragmatically reviewed the Canadian adaptation of the cost-effectiveness analysis of adjuvant atezolizumab for the treatment of early-stage NSCLC in an attempt to identify sources that it could use. It identified a study that studies the OS of patients with stage I-III NSCLC after complete resection who do not receive any active treatment after non-metastatic and metastatic recurrence (49). As this study only presents OS and not PFS for these patients, the CEA uses it to inform the OS of patients with non-metastatic recurrence who do not receive treatment, preventing them from being able to transition to subsequent health states Figure 20. Based on the AIC/BIC, the log-normal parametric survival model provide the best fit of modelled to observed OS despite the use of the exponential model.

Criterion	Exponential	Weibull	Log-Nor-	Gen.	Log-Lo-	Gompertz
			mal	Gamma	gistic	
AIC						
BIC						
Reference: (Nakamichi, et al.,	2017) (32)				

The CEA cannot include the results of the generalized gamma model as statistical models did not converge.

Criterion	Exponential	Weibull	Log-Nor-	Gen.	Log-Lo-	Gompertz
			mal	Gamma	gistic	
AIC						
BIC						
		C) (10)				

Figure 20 Progression-Free Survival after Non-Metastatic Recurrence by Treatment Option (No treatment)

The CEA cannot include the results of the generalized gamma model as statistical models did not converge.

8.2.2.2.3 Metastatic Recurrence (First-Line)

The SLR identified four studies that study the PFS of first-line metastatic treatment with alectinib (29, 50-52). The first of the four studies is used as it is does not focus solely on an Asian population and the CEA has access to the IPD (Figure 21). Depending on whether one uses the AIC or BIC, the generalized gamma and log-normal parametric survival models appear to provide the best fit of modelled to observed PFS despite the use of the exponential model.

The SLR identified ten studies that study the PFS of first-line metastatic treatment with crizotinib (29, 30, 50-57). The CEA only considers four studies that do not focus solely on an Asian population and do not comprise of ALK-negative patients. Table 22 presents these studies' patient baseline characteristics and shows that patients across them are similar. It is because of this that the CEA does not base the choice of which study to use to inform PFS on the comparability of the patients in these studies to those in ALINA. Rather, the CEA bases the choice on which study has the greatest median follow-up to limit any uncertainty in the PFS projections. As such, the CEA uses Solomon et al. (2023) (30) Figure 22. Based on the AIC/ BIC, the log-logistic parametric survival model appears to provide the best fit of modelled to observed PFS despite the use of the exponential model.

The SLR identified one study each that studies the PFS of first-line metastatic treatment with brigatinib (53) and lorlatinib (30)

Figure 23 and Figure 24, respectively. Based on the AIC/BIC, the log-normal and gompertz parametric survival models provide the best fit of modelled to observed PFS for brigatinib and lorlatinib despite the use of the exponential model to model both treatments.

The SLR did not identify any studies that study the PFS or OS of patients who do not receive any treatment. Thus, the CEA also uses Wong et al. (2016) (49) to inform the OS of patients with first-line metastatic recurrence who do not receive treatment (Figure 25). Depending on whether one uses the AIC or BIC, the generalized gamma and log-normal parametric survival models provide the best fit of modelled to observed OS despite the use of the exponential model.

Table 22 Patient Characteristics of Studies considering First-Line Metastatic Treatment with Crizotinib (Clinical SLR [Advance-Stage NSCLC]; Search: September, 2023)

Characteristic	(Camidge, et al., 2019)(29)	(Camidge, et al., 2021)(53)	(Solomon, et al., 2014)(55)	(Solomon, et al., 2023)(30)
Age (median)	54	60	52	56
Gender (Male)	42%	41%	40%	38%
Race (White)	n.r.	n.r.	53%	49%
Race (Asian)	46%	64%	45%	44%
Race (Others)	54%	36%	2%	1%
Smoking Status (Never)	65%	54%	62%	64%
Smoking Status (Former)	32%	41%	33%	29%
Smoking Status (Current)	3%	5%	6%	6%
Tumor Histology (Adenocarcinoma)	94%	99%	94%	95%
Performance (ECOG 0-1)	93%	96%	94%	94%
Performance (ECOG 2)	7%	4%	6%	6%

Criterion	Ex tia	ponen 1)-	١	Veibul	I	I	Log- Norma	I	(Gen. Gamma	a	L	.og-Lo gistic	-	Gom- pertz	
AIC																	
BIC																	
Referenc	e: ALEX (Investigator Assessed PFS, ITT, Intervention Arm, CCOD: No-																
	vember 30, 2018) (29)																

Figure 22 Crizotinib Progression-Free Survival on First-Line Metastatic Treatment

Criterion	Exp tia	ponen I		١	Neibu	II	L	og-No mal	r-	Gei	n. Gan	nma	L	.og-Lo gistic)-	G	ompei	rtz
AIC																		
BIC																		
	Reference: (Solomon, et al., 2023) (30)																	

Figure 23 Brigatinib Progression-Free Survival on First-Line Metastatic Treatment

Criterion	Exponen-	Weibull	Log-Nor-	Gen. Gamma	Log-Lo-	Gompertz
	tial		mal		gistic	
AIC						
BIC						
		Reference	: (Camidge, et	al., 2021) (53)		

Figure 24 Lorlatinib Progression-Free Survival on First-Line Metastatic Treatment

Criterion	Ехр	onenti	ial	~	Veibul	II	L	og-No mal	r-	(Gen. Gamm	а	l	.og-Lo gistic	G	omper	tz
AIC																	
BIC																	
				Ref	erence	e: (S	Solo	mon,	et a	I., 20)23) (3	80)					

The CEA cannot include the results of the generalized gamma model as the survival analysis could not produce the results.

Figure 25 No treatment Progression-Free Survival on First-Line Metastatic Treatment

Criterion	Exp	onen	\	Neibul	I	L	og-Noi	r-		Gen.		l	log-Lo	G	ompei	rtz
	tial						mal		(Gamma	a		gistic			
AIC																
BIC																
				Refer	enc	:e: (\	Nong,	et a	I., 20	16) (4	9)					

8.2.2.2.4 Metastatic Recurrence (Second-Line)

The SLR identified three studies that study the OS of second-line metastatic treatment with alectinib (31, 58, 59). The CEA does not consider Hotta et al. (2022) as this study only focuses solely on an Asian population. While Yang et al. (2023) and Novello et al. (2018) focus on global populations that previously treated with crizotinib and other systemic anti-cancer treatment, the CEA informs OS with the latter of the two studies as it has access to the IPD and does not need to produce an approximated dataset (Figure 26). Depending on whether one uses the AIC or BIC, the log-logistic, log-normal and exponential parametric survival models provide the best fit of modelled to observed OS.

The SLR identified one study that studies the OS of second-line metastatic treatment with ceritinib but does not present the Kaplan-Meier estimates (60). The CEA estimates the monthly transition probability as such [median month OS = 18.1; $\lambda = \ln(0.5)/(18.1) = 0.038$], however, it is currently left out of the model as the current model structure only allows for the inclusion of estimates from a parametric survival analysis.

The SLR identified three studies that study the OS of second-line metastatic treatment with chemotherapy (31, 58, 59). A limitation of these sources is that the studies do not focus on patients previously been treated with alectinib, brigatinib or lorlatinib. With these limitations in mind, the CEA proceeds with the use of Novello et al. (2018) (31) as it has access to the IPD and does not need to produce an approximated dataset to conduct analysis (

Figure 27). Based on the AIC/BIC, the gompertz parametric survival model provides the best fit of modelled to observed OS despite the use of the exponential model. The CEA uses Wong et al. (2016) (49) to inform the OS of patients not on treatment (Figure 25).

Figure 26 Alectinib OS on Second-Line Metastatic Treatment

Criterion	Exponen tial		Weibu	II	L	og-No mal	r-	Ger	n. Garr	nma	l	.og-Lo gistic		Go	ompei	rtz
AIC																
BIC	BIC															
	Reference: ALUR (ITT, Intervention Arm, CCOD: October, 2018) (31)															

Figure 27 Cisplatin + Pemetrexed Overall Survival on Second-Line Metastatic Treatment

8.2.2.5 Type of progression free events.

Patients who have non-metastatic or metastatic recurrence (first-line) can experience further disease progression or death while they are progression-free. The CEA allows this to differ by treatment option and uses the same sources to do this that inform the PFS. However, as summarised in Table 23 only one study includes information on the type of progression event a patient experiences (progression or death). Thus, the CEA uses the ALEX study to inform the proportion of patients who experience progression versus death as their progression-free event in the non-metastatic and metastatic (first-line) recurrence health states.

	Non-Meta	static Recurre	ince		
PFS Event		Chemor	adiotherapy		
Total Events			14		
Death		Not	reported		
Progression		Not	reported		
Reference		(Nakamichi,	et al., 2017)(3	32)	
	Metastatic Re	ecurrence (Firs	st-Line)		
PFS Event	Alectinib	Crizotinib	Brigatinib	Lorlatinib	Pooled
Total Events	81	92	73	49	-
Death	9 (11.1%)	Not re-	Not re-	Not re-	
		ported	ported	ported	-
Progression	72 (88.9%)	Not re-	Not re-	Not re-	
		ported	ported	ported	-
Reference	ALEX (ITT, Inter- vention Arm, CCOD: November 30, 2018)*(29)	(Solomon, et al., 2023)	(Camidge, et al., 2021)(53)	(Solomon, et al., 2023)(30)	-

Table 23 Types of Progression-Free Survival Events

8.2.2.2.6 Summarized Overall survival in the model

Figure 28: Modelled overall survival in the economic model.

8.2.3 Calculation of transition probabilities

Figure 29: Markov trace alectinib

Figure 30: Markov trace Themotherapy

Health state (from)	Health state (to)	Description of method	Reference
Disease-free survival	Recurrence – Alectinib	Parametric extrapolation based on the ALINA study (log-logistic as base case)	(9)
	Recurrence – Chemotherpy	Parametric extrapolation based on the ALINA study (log-logistic as base case)	-
	Non-meta- static recur- rence - Treat- ment	Contant fraction of recurrence based on the ALINA study (64.3% for alectinib and 44.0% for chemotherapy)	
	Metastatic re- currence – No treatment	Contant fraction of recurrence based on the ALINA study (35.7% for alectinib and 54.0% for chemotherapy)	-
	Death	Contant fraction of recurrence based on the ALINA study (0.0% for alectinib and 2.0% for chemotherapy)	
Non-meta- static recur- rence - treat- ment	Metastatic re- currence - Treatment	Transition probability calculated based on Naka- michi et al. (2017) using an exponential distribu- tion due to the nature of a markov model. Transi- tion probability:	(32)
	Metastatic re- currence – No treatment	Transition probability calculated based on Wong et al. (2016) using an exponential distribution due to the nature of a markov model. Transition probability:	(49)
	Death	Assumption that patients are not dying from this stage, but rather progress before death	Assump- tion
Metastatic recurrence (1L) - Alec- tinib	Metastatic re- currence (2L)	Transition probability calculated based on the ALEX study using an exponential distribution due to the nature of a markov model. Transition prob- ability:	(29)
Metastatic recurrence (1L) – Lorla- tinib	Metastatic re- currence (2L)	Transition probability calculated based on Solo- mon et al. (2023) using an exponential distribu- tion due to the nature of a markov model. Transi- tion probability:	(8)
Metastatic recurrence (1L) – Brigatinib	Metastatic re- currence (2L)	Transition probability calculated based on Camidge et al. (2021) using an exponential distri- bution due to the nature of a markov model. Transition probability:	(53)
Metastatic recurrence (1L) – Crizo- tinib	Metastatic re- currence (2L)	Transition probability calculated based on Solo- mon et al. (2023) using an exponential distribu- tion due to the nature of a markov model. Transi- tion probability:	(8)
Metastatic recurrence (1L) – No treatment	Metastatic re- currence – No treatment	Transition probability calculated based on Wong et al. (2016) using an exponential distribution due to the nature of a markov model. Transition probability:	(49)

Table 24 Transitions in the health economic model

Metastatic recurrence (1L) – All	Death	Constant proportion of patients with pro- gression as event versus death based on the ALEX study. Applied for all ALK-TKI treatments	(29)
Metastatic recurrence (2L) – Alec- tinib	Death Death Death	Transition probability calculated based on the ALUR study using an exponential distribution due to the nature of a markov model. Transition prob- ability:	(31)
Metastatic recurrence (2L) – Chem- otherapy		Transition probability calculated based on the ALUR study using an exponential distribution due to the nature of a markov model. Transition prob- ability:	
Metastatic recurrence (2L) – No treatment		Transition probability calculated based on Wong et al. (2016) using an exponential distribution due to the nature of a markov model. Transition probability:	(49)

8.3 Presentation of efficacy data from [additional documentation]

Described above

8.4 Modelling effects of subsequent treatments

Described above

8.5 Other assumptions regarding efficacy in the model

Described above

8.6 Overview of modelled average treatment length and time in model health state

Table 25 Estimates in the model						
	Modelled average [DFS]	Modelled median [DFS] (reference in Excel)	Observed median from relevant study			
Alectinib			Table 27			
Chemotheraphy			Table 27			

Treatment	Treatment length [months]	DFS [months]	Non- metastatic recurrence [months]	Metastatic Recurrence First-Line [months]	Metastatic Recurrence Second- Line [months]
Alectinib					
Chemotheraphy	2.59	135.8	7.8	20.5	12.6

Table 26 Overview of modelled average treatment length and time in model health state, undiscounted and not adjusted for half cycle correction (adjust the table according to the model)

More details in section 8.6.1 and 8.6.2

8.6.1 Adjuvant treatment duration

Patients discontinue adjuvant treatment if they experience recurrence, death or discontinue treatment for other reasons (e.g. intolerable toxicity, adverse events). The CEA uses evidence from ALINA to inform the discontinuation of adjuvant alectinib and chemotherapy. For the control arm, it uses data on this matter from the drug (i.e. gemcitabine, pemetrexed or vinorelbine) combined with cisplatin and carboplatin as patients in the control arm could switch from cisplatin to carboplatin. Table 27 provides an overview of this evidence.

Table 27 Proportion of Patients discontinuing Treatment after each Month/Cycle (ALINA; Safety-Evaluable Patients; CCOD: June 26, 2023)

Alectinib					
Month 1					
Month 2					
Month 3					
Month 4					
Month 5					
Month 6					
Month 7					
Month 8					
Month 9					
Month 10					
Month 11					
Month 12					
Month 13					
Month 14					
Month 15					
Month 16					
Month 17					
Month 18					
Month 19					
Month 20					
Month 21					
Month 22					
Month 23					
Month 24					
Control Arm*					
Regimen	Cisplatin contain- ing Regimen	Carboplatin con- taining Regimen	Gemcitabine/Pemetrexed/ Vinorelbine		
	(N = 119)	(N = 14)	(N = 120)		
---------	-----------	----------	-----------		
Cycle 1	6.7%	14.3%	2.5%		
Cycle 2	7.6%	50.0%	0.8%		
Cycle 3	4.2%	28.6%	6.7%		
Cycle 4	81.5%	7.1%	90.0%		

*The CEA informs treatment discontinuation with section 4.6.1.2 of the ALINA CSR (36). This evidence is not conditional on the treatment regimen received, it is generated by pooling all patients who received each drug.

8.6.2 Treatment after recurrence duration

Patients who receive treatment after recurrence can discontinue treatment before completing treatment also for reasons other than disease-progression or death. The CEA allows this to differ by treatment option and uses the same sources to do this that inform the PFS, as ALINA does not collect information on treatment discontinuation for patients on subsequent treatment after the earliest recurrence preventing its use. Table 28 presents the median number of months on treatment which the CEA uses to cap the number of months that a patient can receive treatment for (while presented to one decimal place, the CEA rounds them). Unfortunately, for chemoradiotherapy, the source does not provide any evidence on treatment discontinuation and, therefore, only allows patients to discontinue treatment if they experience an event. It should be noted that while the CEA can allow metastatic treatment discontinuation to be informed by the projection of time-to-off treatment into the future, it currently does not have this functionality as not all sources provided Kaplan-Meier estimates on this matter. A limitation with the approach used is that some patients may have remained on treatment after the median cut-offs biasing downwards the treatment costs

Non-Metastatic Recurrence	Median Number of Months on Treatment	Reference	
Chemoradiotherapy	Not reported	(Nakamichi, et al., 2017)(32)	
Metastatic Recurrence (First- Line)	Median Number of Months on Treatment	Reference	
Alectinib	27.0	(Camidge, et al., 2019)(29)	
Crizotinib	9.6	(Solomon, et al., 2023)(30)	
Brigatinib	34.9	(Camidge, et al., 2021)(53)	
Lorlatinib	33.3	(Solomon, et al., 2023)(30)	
Metastatic Recurrence (Second-	Median Number of Weeks	Defeveres	
Line)	on Treatment	Kelelelice	
Alectinib	20.1	(Novello, et al., 2018)(31)	
Ceritinib	30.3	(Shaw, et al., 2017)(60)	
Cisplatin + Pemetrexed	6.0	(Novello, et al., 2018)(31)	

Table 28 Treatment Discontinuation with Treatment after Recurrence

9. Safety

9.1 Safety data from the clinical documentation

The safety-evaluable population included 248 patients who received any study treatment: 128 in the alectinib arm and 120 in the chemotherapy arm. Among safety-evaluable patients, the median duration of safety follow-up, defined as time from first study drug administration to the end of the adverse event (AE) reporting period, was 24.8 months (range:) in the alectinib arm, and 3.7 months (range:) in the chemotherapy arm. The median duration of exposure to alectinib was 23.9 months (range:) while the median duration of exposure to chemotherapy was 2.1 months (range:). When evaluating the safety data, it is important to take the significant difference of median exposure to treatment between the two arms into account (36).

All AEs were reported during treatment and until date of study completion or discontinuation, CCOD, 28 days after last dose of alectinib or 28 days after the end of the last cycle of chemotherapy (i.e., a maximum of 25 months for patients randomized to the alectinib arm and 4 months for patients randomized to the chemotherapy arm). Consequently, the period in which AEs were collected for the alectinib arm was substantially longer than the chemotherapy arm.

Table 29 provides an overview of safety events in the safety-evaluable population. As ALINA (BO40336) is still ongoing, data is based on the period up until the CCOD of June 26, 2023.

	Alectinib (N=128) (source)	Chemotherapy (N=120) (source)	Difference, % (95 % Cl)
Number of adverse events, n	1685	978	698 / NA (NA;NA)
Number and proportion of patients with ≥1 adverse events, n (%)	126 (98.4%)	112 (93.3%)	14 / 5.1% (NA;NA)
Number of serious adverse events*, n	20	16	4 / NA (NA;NA)
Number and proportion of patients with ≥ 1 serious adverse events*, n (%)	17 (13.3%)	10 (8.3%)	7 / 5% (NA;NA)
Number of CTCAE grade ≥ 3 events, n	50	67	-17 / NA (NA;NA)
Number and proportion of patients with ≥ 1 CTCAE grade ≥ 3 events [§] , n (%)	38 (29.7%)	37 (30.8%)	1 / -1.1% (NA;NA)
Number of adverse reac- tions, n	-	-	-
Number and proportion of patients with ≥ 1 adverse reactions, n (%)	-	-	-
Number and proportion of patients who had a dose re- duction**, n (%)	47 (36.7%)	24 (20.0%)	23 / 16.7 % (NA;NA)
Number and proportion of patients who discontinue treatment regardless of reason***, n (%)	18 (14.1%)	12 (10.0%)	6 /4.1 % (NA;NA)

Table 29 Overview of safety events. The median duration of treatment was 23.9 months in the alectinib group and 2.1 months in the chemotherapy group (36).

Number and proportion of	7 (5.5%)	14 (11.7%)	-7 / -6.2 %
patients who discontinue			(NA;NA)
treatment due to adverse			
events, n (%)			

Overall, the frequency of serious AEs (SAE) was low in both treatment arms. Most SAEs were Grade 3 or less in severity and had resolved by the CCOD. The proportion of patients who experienced at least one SAE was 13.3% (17 patients) in the alectinib arm and 8.3% (10 patients) in the chemotherapy arm. The only SAE with a notable difference (> 2% between the arms) was appendicitis (3.1% [4 patients] in the alectinib arm and 0 patients in the chemotherapy arm).

. SAEs by System Organ Class ($\geq 2\%$ of patients) and SAEs by PT ($\geq 1\%$ of patients) are listed in Table 30 (36).

Table 30 Serious adverse events (All AEs were reported during treatment and until date of study completion or discontinuation, CCOD, 28 days after last dose of alectinib or 28 days after the end of the last cycle of chemotherapy).

Adverse events	Alectinib) (N=128)	Chemotherapy (N=120)				
	Number of pa- tients with ad- verse events	Number of ad- verse events	Number of pa- tients with ad- verse events	Number of ad- verse events			
Adverse event, n (%)	17 (13.3%)	20	10 (8.3%)	16			
The most frequent SAEs by SOC (≥2% of patients)							
Infections and infes- tations	11 (8.6%)	11	2 (1.7%)	2			
Gastrointestinal dis- orders	2 (1.6%)	2	4 (3.3%)	8			
The most frequent SAE	is by PT (≥1% of pa	atients)					
Appendicitis	4 (3.1%)	-	0	-			
Pneumonia	3 (2.3%)	-	1 (0.8%)	-			
Nausea	0	-	2 (1.7%)	-			
Neutrophil count de- crease	0	-	2 (1.7%)	-			
Acute myocardial in- farction	2 (1.6%)	-	0	-			

In Table 31 below grade 3-4 adverse events occurring in at least 10% of patient from the ALINA study is presented (9). No grade 5 events were observed.

Table 31 Adverse events used in the health economic model that appear in more than 10 % of patients

Adverse events	Alectinib (N=128)	Chemotherapy (N=120)		
	Frequency used in economic model for inter- vention	Frequency used in economic model for com- parator	Source	Justification
Adverse event, n (%)				
Investigations	13 (10.2%)	14 (11.7%)	Wu et al	Direct head-to-
Neutrophil count decrea- sed	0 (0%)	12 (10.0%)	- (3)	neau study
Blood creatine phosphoki- nase increased	8 (6.2%)	1 (0.8%)	_	
White blood cell count de- creased	0 (0%)	4 (3.3%)	-	
Alanine aminotransferase increased	2 (1.6%)	0 (0%)	-	
Blood bilirubin increased	2 (1.6%)	0 (0%)	-	
Aspartate aminotransfe- rase increased	1 (0.8%)	0 (0%)	-	
Blood creatinine increased	1 (0.8%)	0 (0%)	-	
Liver function test increa- sed	1 (0.8%)	0 (0%)	-	
Blood and lymphatic sys- tem disorders	0 (0%)	12 (10.0%)	-	
Neutropenia	0 (0%)	10 (8.3%)	-	
Anaemia	0 (0%)	1 (0.8%)	-	
Febrile neutropenia	0 (0%)	1 (0.8%)	_	
Leukopenia	0 (0%)	1 (0.8%)	-	
Gastrointestinal disorders	4 (3.1%)	9 (7.5%)	-	
Nausea	0 (0%)	5 (4.2%)	-	
Constipation	1 (0.8%)	1 (0.8%)	_	

Diarrhoea	1 (0.8%)	0 (0%)
Vomiting	0 (0%)	2 (1.7%)
Abdominal pain	0 (0%)	1 (0.8%)
Epigastric discomfort	0 (0%)	1 (0.8%)
Regurgitation	0 (0%)	1 (0.8%)
Stomatitis	1 (0.8%)	0 (0%)
Infections and infestati- ons	1 (0.8%)	1 (0.8%)
Appendicitis	1 (0.8%)	0 (0%)
Urinary tract infection	0 (0%)	1 (0.8%)
General disorders and ad- ministration site condi- tions	1 (0.8%)	5 (4.2%)
Asthenia	0	3 (2.5%)
Fatigue	1 (0.8%)	2 (1.7%)
Metabolism and nutrition disorders	1 (0.8%)	2 (1.7%%)
Hypertriglyceridaemia	1 (0.8%)	0
Decreased appetite	0	1 (0.8%)
Decreased appetite Type 2 diabetes mellitus	0	1 (0.8%) 1 (0.8%)
Decreased appetite Type 2 diabetes mellitus Respiratory, thoracic and mediastinal disorders	0 0 1 (0.8%)	1 (0.8%) 1 (0.8%) 1 (0.8%)
Decreased appetite Type 2 diabetes mellitus Respiratory, thoracic and mediastinal disorders Cough	0 0 1 (0.8%) 1 (0.8%)	1 (0.8%) 1 (0.8%) 1 (0.8%) 0
Decreased appetite Type 2 diabetes mellitus Respiratory, thoracic and mediastinal disorders Cough Pneumonitis	0 0 1 (0.8%) 1 (0.8%)	1 (0.8%) 1 (0.8%) 1 (0.8%) 0 0
Decreased appetite Type 2 diabetes mellitus Respiratory, thoracic and mediastinal disorders Cough Pneumonitis Pulmonary embolism	0 0 1 (0.8%) 1 (0.8%) 0	1 (0.8%) 1 (0.8%) 1 (0.8%) 0 0 1 (0.8%)
Decreased appetite Type 2 diabetes mellitus Respiratory, thoracic and mediastinal disorders Cough Pneumonitis Pulmonary embolism Skin and subcutaneous tissue disorders	0 0 1 (0.8%) 1 (0.8%) 0 2 (1.6%)	1 (0.8%) 1 (0.8%) 1 (0.8%) 0 0 1 (0.8%) 0 (0%)
Decreased appetite Type 2 diabetes mellitus Respiratory, thoracic and mediastinal disorders Cough Pneumonitis Pulmonary embolism Skin and subcutaneous tissue disorders Rash	0 0 1 (0.8%) 1 (0.8%) 0 2 (1.6%) 1 (0.8%)	1 (0.8%) 1 (0.8%) 1 (0.8%) 0 0 1 (0.8%) 0 (0%) 0 (0%)

For adverse events applied in subsequent lines in the health economic model. See next section and appendix E.

In Table 32 below subsequent treatments for both treatment arms in ALINA is described.

Table 32 Subsequent Treatments In Patients with Disease Recurrence (ITT Population) (39).

Number of patients with dis- ease recurrence, n (%)	Alectinib (n=15)	Chemotherapy (n=49)
Patients receiving any post- recurrence treatment	13 (86.7)	43 (87.8)
Systemic therapy	13 (86.7)	38 (77.6)
ALK TKI	7 (46.7)	<mark>37 (</mark> 75.5)
Alectinib	4 (26.7)	29 (59.2)
Brigatinib	4 (26.7)	4 (8.2)
Crizotinib	0	4 (8.2)
Lorlatinib	0	2 (4.1)
Ceritinib	0	1 (2.0)
Chemotherapy	6 (40.0)	2 (4.1)
Other anti-cancer therapy	1 (6.7)	1 (2.0)
Immunotherapy	1 (6.7)	1 (2.0)
Radiotherapy	5 (33.3)	9 (18.4)
Surgery	1 (6.7)	3 (6.1)

Safety data from external literature applied in the health 9.2 economic model

The CEA does not consider grade 1-2 adverse events as these are events that are defined by mild to moderate symptoms which may not require any intervention. It only considers grade 3-5 treatment emergent adverse events as these are events that are treatment related and produce severe to life threatening symptoms that may require an invasive or emergency intervention. Table 56 (in Appendix E) presents the adverse events used in the health economic model. These are identified through an SLR described in Appendix J. The CEA uses this data to calculate a monthly probability of experiencing each event while on treatment together with an estimate on total follow-up. $P(adverse \; event_x) = 1 - e^{-occurence_x/follow-up}$

x is the adverse event, occurence is the number of times it occurred, and follow-up is follow-up in months. The CEA uses the same sources to inform the adverse events realized

by patients on metastatic treatment after recurrence that it uses to inform PFS, as ALINA does not collect information on this matter for patients on subsequent treatment after earliest contributing event. Unfortunately, for chemoradiotherapy, Nakamichi et al. (2017) do not provide any evidence on adverse events. Thus, the CEA informs the AEs of these patients with the AEs of the control arm of ALINA as both patients receive 4 cycles of cisplatin-based chemotherapy. A limitation of this approach is that it may not account for the AEs that are caused by the radiotherapy. However, it is deemed appropriate in the absence of reliable evidence. The CEA uses the same formula above to calculate a monthly probability of experiencing each of the events. A limitation with the use of these studies is that they did not present any evidence on the occurrence of grade 3-5 treatment emergent adverse events. Instead, they presented evidence on the number of patients who experienced each grade 3-5 adverse event. Data on SAE for subsequent treatment lines in the health economic model is presented in appendix E.

10. Documentation of health-related quality of life (HRQoL)

	•	
Measuring instrument	Source	Utilization
SF-36	ALINA (BO40336)	Clinical effectiveness
EQ-5D-5L	ALINA (BO40336)	Utilities/Clinical effectiveness
EQ-5D-VAS	ALINA (BO40336)	Clinical effectiveness

Table 33 Overview of included HRQoL instruments

10.1 Presentation of the health-related quality of life

10.1.1 Study design and measuring instrument

HRQoL was an exploratory endpoint in ALINA (BO40336) to document the impact of alectinib compared with platinum-based chemotherapy on patients' quality of life and daily function as measured using. It was measured using the Short Form-36 version 2 (SF-36v2) health survey. SF-36v2 was the primary instrument for collection HRQoL, and is therefore carefully described below. In addition til SF-36v2 HRQoL was also measure using EQ-5D, which is also presented as a supplement.

Patients randomized to the chemotherapy arm could receive four 21-day cycles of treatment whereas patients randomized to the alectinib arm could continue to receive treatment up to Week 96. Due to this difference in the treatment schedules, Patient-Reported Outcomes (PRO) comparisons between arms were only made up to and including Week 12. The analysis presented here is focused on the ITT population. However, similar results were observed in the subpopulation with stage II-IIIA disease.

10.1.2 Data collection

In ALINA (BO40336), HRQoL was measured using the SF-36v2 health quesionaire. SF-36v2 assesses functional health and well-being across 8 domains and 2 aggregated summary scores: the physical (PCS) and mental (MCS) component summary scores. Patients in ALINA (BO40336) completed the SF-36v2 at baseline, every 3 weeks to Week 12, then every 12 weeks until disease recurrence, withdrawal of consent, death, or Week 96 (or equivalent post-chemotherapy follow-up visit) – the same is the case for EQ-5D. SF-36v2 was scored using norm-based scoring relative to the 2009 US general population (mean \pm standard deviation: 50 \pm 10), with higher scores indicating better health. Within-group minimal important differences (MIDs) were used as benchmarks for each domain, MCS and PCS.

Time point	HRQoL population N	Missing N (%)		Expected to complete N	Completion N (%)	
	Number of patients at randomiza- tion	Number of patients for whom data is missing (% of patients at randomi- zation)		Number of patients "at risk" at time point X	Number of patients who completed (% of patients expected to complete)	
			Alectinib			
		SF-36	EQ-5D		SF-36	EQ-5D
Baseline						
Week 3						
Week 6						
Week 12						
Week 24						
Week 36						
Week 48						
Week 60						
Week 72						
Week 84						
Week 96						
Safety fol- low-up						
		C	hemotherap	у		
Baseline						
Week 3						
Week 6						
Week 9						
Week 12						
Safety fol- low-up						

Table 34 Pattern of missing data and completion – SF36v2 and EQ-5D-5L VAS

10.1.3 HRQoL results

SF-36v2 assesses functional health and well-being across 8 domains and 2 aggregated summary scores: the physical (PCS) and mental (MCS) component summary scores. Below the summary scores, PCS and MCS together with EQ-5D, are presented. However, illustrations and tables of the domains are presented in Appendix F.

Figure 32: SF-36v2 - Physical Component Summary

Figure 33: EQ-5D-VAS

Figure 34: EQ-5D-VAS

	Intervention			Compa	Comparator		Intervention vs.
							comparator
	N	Mean (SE)		N	Mean (SE)		Difference (95% Cl) p- value
			Mer	ital Con	nponent s	Summary	(MCS)
Baseline							
Week 3							
Week 6							
Week 9							
Week 12							
Week 24							N/A
Week 36							N/A
Week 48							N/A
Week 60							N/A
Week 72							N/A
Week 84							N/A
Week 96							N/A
			Phys	sical Co	mponent	Summary	(PCS)
Baseline							
Week 3							
Week 6							
Week 9							
Week 12							
Week 24							N/A
Week 36							N/A
Week 48							N/A
Week 60							N/A
Week 72							N/A
Week 84							N/A
Week 96							N/A
		VAS	5L		VAS	5L	
Baseline							
Week 3							
Week 6							
Week 9							
Week 12							

Table 35 HRQoL SF-36v2 - summary statistics MCS and PCS

Week 24	N/A
Week 36	N/A
Week 48	N/A
Week 60	N/A
Week 72	N/A
Week 84	N/A
Week 96	N/A

10.2 Health state utility values (HSUVs) used in the health economic model

10.2.1 HSUV calculation

ALINA administered the EuroQol 5-dimension, 5-level questionnaire (EQ-5D-5L) with different frequencies for patients in the intervention and control arms. For the intervention arm, the questionnaire was administered at baseline, every 3 weeks through week 12, and every 12 weeks thereafter until recurrence, withdrawal of consent, death or week 96 and additionally at the safety and disease follow-up visits. For the control arm, it was administered at baseline, every 3 weeks through week 12 and at the safety and disease follow-up visits. Responses were converted to health state utility values (HSUV) between 0 (death) and 1 (perfect health) with the use of a Denmark-specific algorithm (Jensen et al 2021) (61). Figure 35 descriptively summarizes the HSUVs.

The CEA uses a linear mixed-effects model with normal random subject effects to evaluate the effect of baseline health state utility values (mean subtracted), treatment with alectinib, being off treatment, and being off treatment conditional on treatment with alectinib on a patients HSUV while being disease-free. Table 36 presents the results of the mixed-effects model, which shows that all factors have a statistically significant effect, with the exception of being off treatment conditional on treating with alectinib.

 Table 36 Health State Utility Values – Mixed-Effects Model Danish tariffs (ALINA; CCOD: June 26, 2023)

Variable	Estimate	S.E.	T-Value
Intercept			
Baseline Utility			
Alectinib			
Off-Treatment			
Alectinib*Off-Treat-			
ment			

Age and gender adjusted utility values for the Danish general population has been used according to the DMC guidance.

Table 37 summarizes the results from the mixed-effects model. The CEA uses the estimates to inform the HSUV of disease-free patients conditional on treatment received and whether they are on or off treatment.

Table 37 Health State Utility Values – Summary Danish tariffs (ALINA; CCOD: June 26, 2023)

Variable	Estimate		S.E.	
Alectinib - On-Treatment				
Alectinib - Off-Treatment				
Chemotherapy - On Treatment				
Chemotherapy – Off-Treatment				

10.2.2 Mapping

N/A

10.2.3 Disutility calculation

Disutilities has not been used in the health economic analysis.

10.2.4 HSUV results

Table 38 Overview of health state utility values [and disutilities]

	Results [95% CI]	Instrument	Tariff (value set) used	Comments
HSUVs				
Alectinib – On- Treatment		EQ-5D-5L	DK	More info in section 10.2.1
Alectinib – Off- Treatment		EQ-5D-5L	DK	More info in section 10.2.1
Chemotherapy – On Treatment		EQ-5D-5L	DK	More info in section 10.2.1
Chemotherapy – Off-Treatment		EQ-5D-5L	DK	More info in section 10.2.1
Non-Metastatic Recurrence		EQ-5D	UK	More info in section 10.2.1
Metastatic pro- gression		EQ-5D	UK	More info in section 10.2.1

Health state utility values measured in other trials than the clinical trials forming the basis for relative efficacy

The CEA uses external sources to inform the health-state utility values of patients after experiencing non-metastatic recurrence, metastatic recurrence and further metastatic progression as ALINA does not administer the EQ-5D-5L questionnaire after recurrence. An SLR was conducted on the health related quality of life of patients with locally advanced or metastatic NSCLC. The SLR identified one relevant study (62). Table 39 presents the results that the CEA includes. The CEA only uses the estimates of the intercept and stage IV covariates to calculate the health state utility values associated with these health states as it appears that the other factors do not have a statistically significant effect on the HSUV of patients with advanced NSCLC. This results in use of HSUV values of 0.77 and 0.71 for patients who are in the non-metastatic and metastatic recurrence health states. This is not used in our base-case.

Table 39 Health State Utility Values – Non-Metastatic Recurrence, Metastatic Recurrence (firstline) and Metastatic Recurrence (second-line) (62)

Variable	Estimate	S.E.	P-Value	
Intercept				
Stage IV				
Progression (first-line)				
Progression-free (sec- ond-line)				
Progression (second- line)				

In addition to the use of the above utility values, the CEA restricts the utility values of all patients to not be higher than the age and sex adjusted utility values of the general population.

Table 40 Overview of health state	e utility values	[and disutilities]
-----------------------------------	------------------	--------------------

	Results [95% CI]	Instrument	Tariff (value set) used	Comments
HSUVs				
Non-Metastatic Recurrence		EQ-5D	UK	More info see above
Metastatic pro- gression		EQ-5D	UK	More info see above

10.2.5 Study design

N/A. See above

10.2.6 Data collection

N/A. See above

10.2.7 HRQoL Results

N/A. See above

10.2.8 HSUV and disutility results

N/A. See above

11. Resource use and associated costs

11.1 Medicine costs - intervention and comparator

Costs and resource use vary depending on the administered treatment and health states. The model includes drug costs, administration costs, subsequent therapy costs, Disease management costs, and AE costs. The costs included are consistent with the limited societal perspective as described in the DMC guidelines (28). Drug costs are estimated from Medicinpriser.dk, where administration costs, disease management costs, and AE costs are based on the Danish diagnose relative group (DRG) tariffs 2024.

For all pharmaceuticals administered in the model, pharmacy purchase prices (PPP) have been used. Drug acquisition costs are applied to patients in each health state. For intravenous therapies, the CEA assumes perfect vial sharing, and uses the cheapest vial size per mg. This simplification is conservative as it is expected that it would affect the results in favor of chemotherapy.

Medicine	Strength	Package size	Pharmacy purchase price [DKK]	Average duration of treatment
Alectinib	150 mg	224	33,270	21.72 Months
Cisplatin	1 mg/ml	50 ml	100	11.29 Weeks
plus Vineralhina	1 mg/ml	100 ml	200	
vinoreipine	10 mg/ml	1 ml	245	
	10 mg/ml	5 ml	1,240	
Cisplatin	1 mg/ml	50 ml	100	12.00 Weeks
plus Gemcitabine	1 mg/ml	100 ml	200	
	40 mg/ml	25 ml	1,000	
	40 mg/ml	50 ml	1,200	
Cisplatin	1 mg/ml	50 ml	100	11.31 Weeks
plus Romotrovod	1 mg/ml	100 ml	200	
Pemetrexed	25 mg/ml	4 ml	1,650	
	25 mg/ml	20 ml	8,250	
Carboplatin	10 mg/ml	15 ml	295	12.00 Weeks
plus Vinorolhino	10 mg/ml	45 ml	226	
viloreibille	10 mg/ml	1 ml	245	

Table 41 Medicine costs used in the model

	10 mg/ml	5 ml	1,240	
Carboplatin	10 mg/ml	15 ml	295	12.00 Weeks
plus Gemcitabine	10 mg/ml	45 ml	226	
Genicitabilie	40 mg/ml	25 ml	1,000	
	40 mg/ml	50 ml	1,200	
Carboplatin	10 mg/ml	15 ml	295	10.42 Weeks
plus Pemetreved	10 mg/ml	45 ml	226	
Temetrexeu	25 mg/ml	4 ml	1,650	
	25 mg/ml	20 ml	8,250	

11.2 Medicine costs - co-administration

N/A.

11.3 Administration costs

The unit costs for the mode of administration were obtained from DRG tariffs 2024 and are applied to the administration cost in the model and presented in Table 42.

Administration type	Frequency	Unit cost [DKK]	DRG code	Reference
Oral	Every day	0	-	-
IV	Once per admin- istration	1311.00	17MA98	MDC17 1-dagsgruppe, pat. mindst 7 år, Diagnose: DC384:Kræft i lungehinde: BWAA: Medicingivning intra- venøst

Table 42 Administration costs used in the model

11.4 Disease management costs

The CEA accounts for CT scan costs that are associated with follow-up care. The frequency at which CT scans are administered differs for patients who are disease-free and have experienced non-metastatic recurrence or metastatic recurrence. In the adjuvant treatment stage the patient is scanned every 3rd month for the first two years. Then every six months between year three and four and one scan year five. After disease progression the patient is followed up every three months. This involves one doctors visit and one CT scan (28).

The pathology department always tests for next generation sequencing NGS and PD-L1 status on all resected patients with higher status than pT1cN0M0, which means all patients that are candidates for adjuvant ALK therapy. This is in clinical practice today and leads to no additional cost.

If a patient relapses shortly after the two year treatment period with an ALK inhibitor a TKI re-challenge will be initiated.

Activity	Frequency	Unit cost [DKK]	DRG code	Reference
Conformal 3- dimensional radiotherapy	Once per week for 7 weeks	32,520.00	27MP02	DRG 2024
Intensity modulated radiotherapy	Not used in the model	2,709.00	27MP04	DRG 2024
Computerised Tomography Scan	Every 3 rd month for the first two years. Then every 6 months be- tween year three and four. One scan year five(28)	2,585.00	30PR06	DRG 2024
Doctors visit	Every CT scan(28)	2111	16MA98	DRG 2024
ALK testing	Before surgery	0	-	Already standard clinical prac- tise(28)

Table 43 Disease management costs used in the model

11.5 Costs associated with management of adverse events

The CEA calculates the monthly probability of experiencing adverse events across health states and treatment options (see section 9 for more details). This allows it to identify the proportion of patients who experience each AE while on treatment. To calculate the cost of managing adverse events, the CEA applies the costs reported in Table 44 to the proportion of patients who experienced them. For less costly events the CEA assumes that the management of the remaining adverse events impose a cost equal to the cost of a general practitioner consultation visit (DRG 13MA98) at the cost of 2111 DKK as of the latest DRG for 2024.

-		
Adverse Event	Reference	Unit Cost in DKK (LC)
Abdominal pain	16MA98	2111
Abdominal pain upper	16MA98	2111
Acute kidney injury	16MA98	2111
Alanine aminotransferase increased	07MA14	31847
Amylase increased	16MA98	2111
Anaemia	16PR02	4218
Angina pectoris	16MA98	2111
Aphasia	16MA98	2111
Appendicitis	06MP17	54961
Arthralgia	16MA98	2111
Aspartate aminotransferase increased	07MA14	31847

Table 44 Cost associated with management of adverse events

Asthenia	16MA98	2111
Atrial flutter	16MA98	2111
Back pain	16MA98	2111
Biliary tract infection	16MA98	2111
Blood alkaline phosphate increased	16MA98	2111
Blood bilirubin increased	16MA98	2111
Blood CPK	16MA98	2111
Blood creatine increased	16MA98	2111
Blood creatine phosphokinase increased	23MA03	5103
Blood lactate dehydrogenase increased	16MA98	2111
Bronchitis	16MA98	2111
Cerebrovascular accident	16MA98	2111
Chest pain	16MA98	2111
Chronic kidney disease	16MA98	2111
Cognitive disorder	16MA98	2111
Cognitive effects	16MA98	2111
Confusional state	16MA98	2111
Constipation	16MA98	2111
Cough	16MA98	2111
Creatinine renal clearance decreased	16MA98	2111
C-reactive protein increased	16MA98	2111
Decreased appetite	16MA98	2111
Deep vein thrombosis	16MA98	2111
Dehydration	16MA98	2111
Depression	16MA98	2111
Depressed level of consciousness	16MA98	2111
Diarrhoea	16MA98	2111
Dysphagia	16MA98	2111
Dyspnea	16MA98	2111
Electrocardiogram Qt prolonged	16MA98	2111
Electrocardiogram T-wave inversion	16MA98	2111
Embolism	01SP01	6661
Epigastric discomfort	16MA98	2111
Epilepsy	16MA98	2111
Faecaloma	16MA98	2111
Fatigue	01PR02	3308
Febrile neutropenia	04MA07	45583
Gamma-glutamyltransferase increased	16MA98	2111
Gastrointestinal obstruction	16MA98	2111
Gastrointestinal perforation	16MA98	2111
General physical health deterioration	16MA98	2111
Glutamyltransferase increased	16MA98	2111
Headache	16MA98	2111
Hepatic enzyme increased	16MA98	2111
Hyperbilirubinaemia	16MA98	2111
Hypercholesterolaemia	16MA98	2111
Hyperglycaemia	16MA98	2111
Hyperlipidaemia	16MA98	2111
Hypertension	16MA98	2111
Hypertensive crisis	16MA98	2111
Hypertriglyceridaemia	16MA98	2111
Hypokalemia	16MA98	2111
Hyponatremia	16MA98	2111
Hypophosphatemia	16MA98	2111

Нурохіа	16MA98	2111
Interstitial lung disease	16MA98	2111
Jaundice	16MA98	2111
Lenticular opacities	16MA98	2111
Leukopenia	16MA98	2111
Lipase increased	16MA98	2111
Liver function test increased	07MA98	1947
Loss of consciousness	16MA98	2111
Lower respiratory tract infection	16MA98	2111
Lung infection	16MA98	2111
Lung infiltration	16MA98	2111
Lymphocyte count decreased	16MA98	2111
Lymphoedema	40PR01	1818
Malaise	16MA98	2111
Mobility decreased	16MA98	2111
Mood effects	16MA98	2111
Muscular weakness	16MA98	2111
Myalgia	08MA15	2026
Myocardial ischemia	16MA98	2111
Nausea	03MA02	8171
Neoplasm progression	16MA98	2111
Neutropenia	04MA07	45583
Neutrophil count decreased	16MA98	2111
Non-cardiac chest pain	16MA98	2111
Oedema	16MA98	2111
Pain	16MA98	2111
Pain in extremity	16MA98	2111
Pathological fracture	16MA98	2111
Pericardial effusion	16MA98	2111
Pericarditis	16MA98	2111
Peripheral neuropathy	01MA04	30685
Petit mal epilepsy	16MA98	2111
Pleural effusion	16MA98	2111
Pneumonia	16MA98	2111
Pneumonitis	04MA13	43907
Pneumothorax	16MA98	2111
Pulmonary embolism	08MA15	2026
Pyrexia	16MA98	2111
Rash	16MA98	2111
Rash maculo-papular	16MA98	2111
Regurgitation	16MA98	2111
Respiratory distress	16MA98	2111
Respiratory failure	16MA98	2111
Respiratory tract infection	16MA98	2111
Stomatitis	16MA98	2111
Syncope	16MA98	2111
Transaminases increased	16MA98	2111
Tumour flare	16MA98	2111
Typhoid fever	16MA98	2111
Type 2 diabetes mellitus	10MA03	37913
Urinary bladder rapture	16MA98	2111
Urinary tract infection	11MA07	30859
Vision disorder	16MA98	2111
Vomiting	16MA98	2111

Weight decreased	16MA98	2111
Weight increased	16MA98	2111
White blood cell count decreased	16MA98	2111

11.6 Subsequent treatment costs

For more details see section 8.

Table 45 Medicine costs o	of subsequent treatments
---------------------------	--------------------------

Medicine	Strength	Package size	Pharmacy purchase price [DKK]	Average duration of treatment
Cisplatin plus	1 mg/ml	50 ml	100	See Table 28
Pemetrexed	1 mg/ml	100 ml	200	
	25 mg/ml	4 ml	1,650	See Table 28
	25 mg/ml	20 ml	8,250	
Alectinib	150 mg	224 Tablets	33,270	See Table 28
Crizotinib	250 mg	60 Tablets	30,353	See Table 28
Brigatinib	180 mg	28 Tablets	34,461	See Table 28
Lorlatinib	25 mg	30 Tablets	35,971	See Table 28
Ceritinib	150 mg	84 Tablets	20,377	See Table 28

11.7 Patient costs

Patient costs has been added to the model according to the health economic model. For each time a patient visits the hospital it is assumed that the patient will spend one hour. The cost of that one patient hour is assumed to be 188 DKK. It is assumed that a patient will not continue follow-up if assumed cured (5 years diease-free). Transportation is assumed to be 180 per visit according the DMC guidelines.

11.8 Other costs (e.g. costs for home care nurses, out-patient rehabilitation and palliative care cost)

Other costs have not been applied.

12. Results

12.1 Base case overview

Table 46 Base case overview

Feature	Description
Comparator	Platinum-based chemotherapy
Type of model	Cohort level Semi-Markov model
Time horizon	40 years (life time)
Treatment line	Adjuvant
Measurement and valuation of health effects	Health-related quality of life measured with EQ- 5D-5L ALINA (BO40336) CCOD: June 26, 2023 (9). Danish population weights were used to esti- mate health-state utility values
Costs included	Medicine costs
	Administration costs
	Disease management costs
	Costs of adverse events
	Subsequent treatment costs
	Patient costs
Dosage of medicine	Fixed and based on weight
Average time on treatment	Intervention: 21.72 Months
	Comparator: 11.29 Weeks
Parametric function for PFS	Intervention: Log-logistic
	Comparator: Log-logistic
Parametric function for OS	See section 8.2.2.2.4
Inclusion of waste	No
Average time in model health state	Alectinib (Discounted years)
Disease-free survival	13.416
Non-Metastatic recurrence 2L	0.308
Metastatic recurrence 1L	0.491

12.1.1 Base case results

Table 47	' Base	case	results,	discounted	estimates
----------	--------	------	----------	------------	-----------

	Alectinib	Chemotherapy	Difference
Drug acquisition costs	757.585	53.448	704.137
Drug administration costs			0
Adverse event costs	2.152	2.025	2.152
Monitoring costs	51.486	66.133	-14.647
Subsequent treatment	270.484	625.059	-354.575
Patient time and transport costs	7.646	8.340	-694
Total costs	1.089.353	755.005	334.348
Life years gained (DFS)	14,5	10,2	4,3
Total QALYs	11,6	8,1	3,57
Incremental costs per life year gained		78,299	
Incremental cost per QALY gained	I (ICER)	93,699	

12.2 Sensitivity analyses

To identify key model drivers and the influence of parameter uncertainty, one-way deterministic sensitivity analyses (DSA) are conducted using alternate values for model parameters. To test the impact of applying different assumption, scenario analyses are conducted for the key model parameters.

To test the robustness of results with respect to uncertainty in the model input parameters, a probabilistic sensitivity analysis (PSA) is performed using a Monte Carlo simulation. In this analysis, each parameter subject to parameter uncertainty is assigned a probability distribution, and cost-effectiveness results associated with the simultaneous selection of random values from the distribution of each of these parameters were generated. The process was repeated for 1,000 iterations and results of the PSA were plotted on the cost-effectiveness plane (or scatter plot) and were used to calculate cost-effectiveness acceptability curves (CEACs), highlighting the probability of cost-effectiveness over various willingness to pay thresholds.

12.2.1 Deterministic sensitivity analyses

Impact on the ICER of the range of some key parameters is presented in Figure 36 below. The tornado diagram presents the relative impact some key influential model parameters have on the list-price ICER (93,9322 DKK per QALY).

Figure 36 Univariate sensitivity analysis - Alectinib vs Chemotherapy - Inc. cost-utility ratio (Base case: DKK 93,669 DKK/QALY)

Table 48 One-way sensitivity analyses results

	Change	Reason / Rational / Source	Incremental cost (DKK)	Incrementa I benefit (QALYs)	ICER (DKK/QALY)
Base case					
% patients initiating	+/-10%	Important	375,810 DKK	3.69	101,926 DKK
treatment after 1L Metastatic Recurrence/Progression		assumption	299,648 DKK	3.47	86,381 DKK
CHT arm - % of DFS Events	+/-10%	Important	358,008 DKK	3.59	100,117 DKK
being Non-Metastatic Recurrence		assumption	309,825 DKK	3.55	87,013 DKK
CHT arm - % of DFS Events being Metastatic Recurrence/Progression (1L)	+/-10%	Important	356.102 DKK	3.59	98,587 DKK
		assumption	306.394 DKK	3.55	87,265 DKK
% patients initiating	+/-10%	Important	356,256 DKK	3.61	98,719 DKK
treatment after Non- Metastatic Recurrence		assumption	313,194 DKK	3.53	88,744 DKK
CHT arm - % of DFS Events	+/-10%	Important	341,386 DKK	3.45	100,261 DKK
being Death		assumption	332,026 DKK	3.60	91,754 DKK
ALE arm - % of DFS Events	+/-10%	Important	343,038 DKK	3.58	95.928 DKK
being Non-Metastatic Recurrence		assumption	325,332 DKK	3.56	91.377 DKK
	+/-10%	Important	325,332 DKK	3.56	91.377 DKK
ALE arm - % of DFS Events being Metastatic Recurrence/Progression (1L)		assumption	343,038 DKK	3.58	95.928 DKK

Additional analysis presented above in the tornado diagram, as scenario analysis and in the model.

12.2.2 Scenario analysis

Scenario analyses are performed to explore how changing some of the key model parameters will impact the model results.

Table 49 below summarizes the main scenario results. Based on the various parameter settings explored in the scenario analyses, the resulting ICERs are differentiating in Alectinib being cost-effective compared to Platinum based chemotheraphy (i.e., max ICER ranging between 69,827 DKK to 321,992 DKK)

Table 49 Scenario analysis

Parameter	Inc. cost per QALY (DKK)	DKK ∆ ICER vs base case	
Base case	93,699		
Assumptions			
Time horizon: 10 years	294,545	200,846	
Time horizon: 15 years	172,082	78,383	
Time horizon: 20 years	127,940	34,241	
Time horizon: 25 years	107,403	13,704	
Time horizon: 30 years	98,986	5,287	
Time horizon: 35 years	95,033	1,334	
DFS distribution			
Exponential	84,110	-9,589	
Weibull	71,350	-22,349	
Log-normal	124,375	30,676	
Generalized Gamma	88,727	-5,427	
Gompertz	70,270	-23,429	
Gamma	76,031	-17,668	
TTOT distribution			
Exponential	108,246	14,577	
Weibull	102,870	9,201	

Log-normal	107,376	13,707
Generalized Gamma	130,985	37,616
Gompertz	117,005	23,336
Gamma	98,537	4,868
Treatment effect		
DFS data pooled across arms	81,300	-12,369
Treatment effect decrease after 24 months and is zero at month 60	204,460	110,791

12.2.3 Probabilistic sensitivity analyses

The cost-effectiveness plane and incremental cost-effectiveness plane, illustrating the QALYs and costs and the incremental QALYs and costs, respectively, are presented in Figure 38 and Figure 39 below using list prices. This represents the joint distribution of costs and effect for the intervention (Alectinib), and the comparator included in the model (Platinum Based Chemotheraphy) and the incremental results between these. All of simulated ICERs are located in the Nord East quadrant, indicating the intervention to be costlier and more effective than the comparator.

Figure 39 Cost-Effectiveness Acceptability Curve

13. Budget impact analysis

13.1 Number of patients: 8 (assumed Market share 100%)

Table 50 Number of new patients expected to be treated over the next five-year period if the medicine is introduced (adjusted for market share)

	Year 1	Year 2	Year 3	Year 4	Year 5			
		Recommendation						
Adjuvant Alectinib	8	8	8	8	8			
Platinum-based	0	0	0	0	0			
chemotherapy								
	Non-recommendation							
Adjuvant Alectinib	0	0	0	0	0			
Platinum-based	8	8	8	8	8			
chemotherapy								

13.2 Budget impact

Table 51 Expected budget impact of recommending the medicine for the indication

	Year 1	Year 2	Year 3	Year 4	Year 5
The medicine under con- sideration is recom- mended	3.460.359	6.889.116	7.333.744	7.845.523	8.343.888
The medicine under con- sideration is NOT recom- mended	1.021.705	2.044.863	3.158.491	4.239.614	5.140.368
Budget impact of the recommendation	2.438.655	4.844.253	4.175.252	3.605.910	3.203.520

14. List of experts

In this application Morten Suppli, Medical doctor specializing in Clinical Oncology at Rigshospitalet consulted Roche during the application.

15. References

1. Gruppe DOL. Klinisk Retningslinje. Adjuverende behandling af ikke-småcellet lungekræft, Version 2.2 [Available from: <u>https://dolg.dk/index.php/referenceprogram-kap1/</u>.

2. Medicinrådet. Medicinrådets anbefaling vedr. atezolizumab til adjuverende behandling af ikke-småcellet lungekræft 2023 [Available from: <u>https://medicinraadetclassic.azureedge.net/media/emplgcu4/medicinr%C3%A5dets-anbefaling-vedr-</u> <u>atezolizumab-til-adjuverende-behandling-af-nsclc-vers-1-0-x.pdf</u>.

3. Medicinrådet. Medicinrådets anbefaling vedr. nivolumab i kombination med kemoterapi til neoadjuverende behandling af ikke-småcellet lungekræft 2023 [Available from: <u>https://medicinraadet-</u>

classic.azureedge.net/media/okll5ota/medicinr%C3%A5dets-anbefaling-vedr-nivolumabi-komb-med-kemoterapi-til-neoadjuverende-behandling-af-nscls-vers-1-0x.pdf.

4. Chaft JE, Dagogo-Jack I, Santini FC, Eng J, Yeap BY, Izar B, et al. Clinical outcomes of patients with resected, early-stage ALK-positive lung cancer. Lung cancer (Amsterdam, Netherlands). 2018;122:67-71.

5. Cao W, Tang Q, Zeng J, Jin X, Zu L, Xu S. A Review of Biomarkers and Their Clinical Impact in Resected Early-Stage Non-Small-Cell Lung Cancer. Cancers. 2023;15(18).

6. Griesinger F, Roeper J, Pöttgen C, Willborn KC, Eberhardt WEE. Brain metastases in ALK-positive NSCLC - time to adjust current treatment algorithms. Oncotarget. 2018;9(80):35181-94.

7. Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Annals of oncology : official journal of the European Society for Medical Oncology. 2020;31(8):1056-64.

8. Solomon BJ, Ahn JS, Dziadziuszko R, Barlesi F, Nishio M, Lee DH, et al. LBA2 ALINA: Efficacy and safety of adjuvant alectinib versus chemotherapy in patients with earlystage ALK+ non-small cell lung cancer (NSCLC). Annals of Oncology. 2023;34:S1295-S6.

9. Wu Y-L, Dziadziuszko R, Ahn JS, Barlesi F, Nishio M, Lee DH, et al. Alectinib in Resected ALK-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine. 2024;390(14):1265-76.

10. udsagn E. 2024.

11. Register DLC. Dansk Lunge Cancer Register Årsrapport 2022 2022 [

12. Register DLC. Dansk Lunge Cancer Register Årsrapport 2022 2023 [

13. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The Eighth Edition Lung Cancer Stage Classification. Chest. 2017;151(1):193-203.

14. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology. 2017;28(suppl_4):iv1-iv21.

15. Sundhedstyrelsen. Pakkeforløb for lungekræft - for fagfolk 2018 [Available from: https://www.sst.dk/-/media/Udgivelser/2018/Lungekraeft/Pakkeforl%C3%B8b-for-lungekr%C3%A6ft-

2018.ashx?sc lang=da&hash=0312B32A6CB7E1473CA0DE4D38877BA5.

16. Gruppe DLC. Lungecancer – Patologi Version 2.2 2023 [Available from: https://www.dmcg.dk/siteassets/kliniske-retningslinjer---skabeloner-og-

vejledninger/kliniske-retningslinjer-opdelt-pa-

dmcg/lungecancer/dlcg patologi v2.2admgodk 080523.pdf.

17. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. The New England journal of medicine. 2010;363(18):1734-9.

18. Blackhall FH, Peters S, Bubendorf L, Dafni U, Kerr KM, Hager H, et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2014;32(25):2780-7.

19. Paik JH, Choi C-M, Kim H, Jang SJ, Choe G, Kim DK, et al. Clinicopathologic implication of ALK rearrangement in surgically resected lung cancer: A proposal of diagnostic algorithm for ALK-rearranged adenocarcinoma. Lung cancer (Amsterdam, Netherlands). 2012;76(3):403-9.

20. Gao Q, Li P, Jiang X, Zhan Z, Yan Q, Zhang B, et al. Worse disease-free, tumorspecific, and overall survival in surgically-resected lung adenocarcinoma patients with ALK rearrangement. Oncotarget. 2017;8(49):86066-81.

21. Chang G-C, Yang T-Y, Chen K-C, Hsu K-H, Huang Y-H, Su K-Y, et al. ALK variants, PD-L1 expression, and their association with outcomes in ALK-positive NSCLC patients. Scientific Reports. 2020;10(1):21063.

22. Hansen KH, Johansen JS, Urbanska EM, Meldgaard P, Hjorth-Hansen P, Kristiansen C, et al. Clinical outcomes of ALK+ non-small cell lung cancer in Denmark. Acta Oncologica. 2023;62(12):1775-83.

23. West H, Hu X, Chirovsky D, Walker MS, Wang Y, Kaushiva A, et al. Clinical and economic impact of recurrence in early-stage non-small-cell lung cancer following complete resection. Future Oncology. 2023;19(20):1415-27.

24. Minutes from Dalupa meeting, Copenhagen, January 2022 2022 [Available from: https://www.lungecancer.dk/wp-content/uploads/2022/01/DalupaKbh2022-Referat.pdf.

25. EMA. Summary of product characteristics - Alecensa. 2024.

26. DLCG. Adjuverende behandling af ikke-småcellet lungekræft version 3. . 2024.

27. Medicinrådet. Medicinrådets lægemiddelrekommandation vedrørende

lægemidler til førstelinjebehandling af uhelbredelig ikke-småcellet - Version 3.2. 2024.28. Medicinrådet. Medicinrådets metodevejledning for vurdering af nye lægemidler.

2024.

29. Camidge D, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. Journal of Thoracic Oncology. 2019:1233-43.

30. Solomon B, Bauer T, Mok T, Liu G, Mazieres J, de Marinis F, et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respiratory Medicine. 2023:354-66.

31. Novello S, Mazieres J, Oh I, de Castro J, Migliorino M, Helland A, et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from the phase III ALUR study. Annals of Oncology. 2018:1409-16.

32. Nakamichi S, Horinouchi H, Asao T, Goto Y, Kanda S, Fujiwara Y, et al. Comparison of radiotherapy and chemoradiotherapy for locoregional recurrence of non-small cell lung cancer developing after surgert. Clinical Lung Cancer. 2017:e441-e8.

33. Chouaid C, Agulnik J, Goker E, Herder GJ, Lester JF, Vansteenkiste J, et al. Healthrelated quality of life and utility in patients with advanced non–small-cell lung cancer: a prospective cross-sectional patient survey in a real-world setting. Journal of thoracic oncology. 2013;8(8):997-1003. 34. Detterbeck FC, Boffa DJ, Tanoue LT. The new lung cancer staging system. Chest. 2009;136(1):260-71.

35. Shah RS, B.J.; Ahn, J.S.; Dziadziuszko, R; Barlesi, F; Nishio, M; Lee, D.H.; Lee, J.S.; Zhong, W; Horinouchi, H; Mao, W; Hochmair, M; de Marinis, F; Migliorino, M.R.; Bondarenko, I; Lohmann, T.O.; Xu, T; Cardona, A; Bordogna, W; Ruf, T; Wu, Y.L. ALINA: efficacy and safety of adjuvant alectinib versus chemotherapy in patients with earlystage ALK+ non-small cell lung cancer (NSCLC). 36TH GERMAN CANCER CONGRESS; 21 Feb 2024; Berlin2024.

36. Ltd FH-LR. CSR - ALINA. 2023.

agency EM. Guideline on the clinical evaluation of anticancer medicinal products
 2023 [Available from: <u>https://www.ema.europa.eu/en/documents/scientific-</u>

guideline/guideline-clinical-evaluation-anticancer-medicinal-products-revision-6 en.pdf.
38. Szeto CH, Shalata W, Yakobson A, Agbarya A. Neoadjuvant and Adjuvant

Immunotherapy in Early-Stage Non-Small-Cell Lung Cancer, Past, Present, and Future. Journal of clinical medicine. 2021;10(23).

39. Wu Y-L DR, Ahn JS, et al. Supplementary Appendix

Alectinib in resected ALK-positive non–small-cell lung cancer. N Engl J Med 2024;390:1265-76. 2024 [Available from:

https://www.nejm.org/doi/suppl/10.1056/NEJMoa2310532/suppl_file/nejmoa2310532_appendix.pdf.

40. SURROGACY ANALYSIS FOR OVERALL SURVIVAL IN RESECTABLE EARLY-STAGE
NON-SMALL CELL LUNG CANCER (Data on file). Draft (Pending publication). 2024.
41. Hardenberg M, Patel B, Matthews C, Califano R, Campelo RG, Grohe C, et al. The value of disease-free survival (DFS) and osimertinib in adjuvant non-small-cell lung cancer (NSCLC): an international Delphi consensus report. ESMO open.
2022;7(5):100572.

42. Sonoda D, Matsuura Y, Ichinose J, Nakao M, Ninomiya H, Mun M, et al. Ultra-late recurrence of non-small cell lung cancer over 10 years after curative resection. Cancer Management and Research. 2019:6765–74.

43. Kim W, Lee HY, Jung S-H, Woo M-A, Kim HK, Choi YS, et al. Dynamic prognostication using conditional survival analysis for patients with operable lung adenocarcinoma. Oncotarget. 2017;8(19):32201.

44. experts Cboc. 2024.

45. Jovanoski N, Yip C. HTA17 Comparison of Methods for Modelling the Cost-Effectiveness of Atezolizumab as an Adjuvant Treatment in Stage II-IIIA Non-Small Cell Lung Cancer. Value in Health. 2023;26(12):S323.

46. Shin D, Cho J, Yoo J, Cho J, Yoon D, Lee G, et al. Conditional survival of surgically treated patients with lung cancer: A comprehensive analyses of overall, recurrence-free, and relative survival. Cancer Research and Treatment. 2021:1057-71.

47. Guyot P, Ades AE, Ouwens M, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Medical Research Methodology. 2012.

48. CADTH. CADTH Reimbursement Review - Atezolizumab (Tecentriq) 2022 [

49. Wong ML, McMurry TL, Stukenborg GJ, Francescatti A, Amato-Martz C,

Schumacher JR, et al. Impact of age and comorbidity on treatment of non-small cell lung cancer recurrence following complete resection: A nationally representative cohort study. Lung cancer (Amsterdam, Netherlands). 2016:108-17.

50. Hida T, Nokihara H, Kondo M, Kim Y, Azuma K, Seto T, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017:29-39.

51. Li Z, Zhao J. Clinical efficacy and safety of crizotinib and alectinib in ALK-positive non-small cell lung cancer treatment and predictive value of CEA and CA125 for treatment efficacy. American Journal of Translational Research. 2021:13108-16.

52. Zhou C, Lu Y, Kim S, Baisamut T, Zhou J, Zhang Y, et al. LBA11 Alectinib (ALC) vs crizotinib (CRZ) in Asian patients (pts) with treatment-naïve advanced ALK+ non-small cell lung cancer (NSCLC): 5-year update from the phase III ALESIA study. Annals of Oncology. 2022.

53. Camidge D, Kim H, Ahn M, Yang J, Han J, Hochmair M, et al. Brigatinib versus crizotinib in ALK inhibitor–naive advanced ALK-positive NSCLC: Final results of phase 3 ALTA-1L trial. Journal of Thoracic Oncology. 2021:2091-108.

54. Horn LW, Z, Wu G, Poddubskaya E, Mok T, Reck M, Wakelee H, et al. Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: A randomized clinical trial. JAMA Oncology. 2021:1617-25.

55. Solomon B, Mok T, Kim D, Wu Y, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. The New England journal of medicine. 2014:2167-77.

56. Zhong W, Wang Q, Mao W, Xu S, Wu L, Shen Y, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncology. 2018:139-48.

57. Yang Y, Min J, Yang N, Yu Q, Cheng Y, Zhao Y, et al. Envonalkib versus crizotinib for treatment-naive ALK-positive non-small cell lung cancer: a randomized, multicenter, open-label, phase III trial. Signal Transduction and Targeted Therapy. 2023.

58. Yang J, Liu G, Lu S, He J, Burotto M, Ahn M, et al. Brigatinib versus alectinib in ALKpositive NSCLC after disease progression on crizotinib: Results of phase 3 ALTA-3 trial. Journal of Thoracic Oncology. 2023:1743-55.

59. Hotta K, Hida T, Nokihara H, Morise M, Kim Y, Azuma K, et al. Final overall survival analysis from the phase III J-ALEX study of alectinib versus crizotinib in ALK inhibitornaïve Japanese patients with ALK-positive non-small-cell lung cancer. ESMO Open. 2022.

60. Shaw A, Kim T, Crino L, Gridelli C, Kiura K, Liu G, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncology. 2017:874-86.

61. Jensen CE, Sørensen SS, Gudex C, Jensen MB, Pedersen KM, Ehlers LH. The Danish EQ-5D-5L value set: a hybrid model using cTTO and DCE data. Applied Health Economics and Health Policy. 2021;19:579-91.

62. Chouaid C, Agulnik J, Goker E, Herder GJM, Lester JF, Vansteenkiste J, et al. Health-related quality of life and utility in patients with advanced non-small-cell lung cancer: a prospective cross-sectional patient survey in a real-world setting. Journal of Thoracic Oncology. 2013:997-1003.

63. Solomon BJ, Ahn JS, Barlesi F, Dziadziuszko R, Nishio M, Shaw AT, et al. ALINA: A phase III study of alectinib versus chemotherapy as adjuvant therapy in patients with stage IB–IIIA anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2019;37(15_suppl):TPS8569-TPS.

64. Shen W, Ji J, Zuo Y, Pu J, Xu Y, Zong C, et al. Comparison of efficacy for postoperative chemotherapy and concurrent radiochemotherapy in patients with IIIA-pN2 non-small cell lung cancer: An early closed randomized controlled trial. Radiotherapy and Oncology. 2014:120-5.

65. Wu Y, John T, Grohe C, Majem M, Goldman J, Kim S, et al. Postoperative chemotherapy use and outcomes from ADAURA: Osimertinib as adjuvant therapy for resected EGFR-mutated NSCLC. Journal of Thoracic Oncology. 2022:423-33.

66. Ueda H, Sakada T, Kuwahara M, Motohiro A. A small randomized phase III singlecenter trial on postoperative UFT administration in patients with completely resected non-small cell lung cancer. Anti-Cancer Drugs. 2004:29-33.

67. Vansteenkiste J, Cho B, Vanakesa T, De Pas T, Zielinski M, Kim M, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected

MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncology. 2016:822-35.

68. Imaizumi M. Postoperative adjuvant cisplatin, vindesine, plus uracil-tegafur chemotherapy increased survival of patients with completely resected p-stage I non-small cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2005:85-94.

69. Okuda K, Yano M, Tatematsu T, Nakamae K, Yamada T, Kasugai T, et al. S-1 vs. paclitaxel plus carboplatin as adjuvant chemotherapy for completely resected stage II/IIIA non-small-cell lung cancer. Molecular and Clinical Oncology. 2018:73-9.

70. Tada H, Mitsudomi T, Misumi T, Sugio K, Tsuboi M, Okamoto I, et al. Randomized phase III study of gefitinib versus cisplatin plus vinorelbine for patients with resected stage II-IIIA non-small-cell lung cancer with EGFR mutation (IMPACT). Journal of Clinical Oncology. 2022:231-41.

71. Yamaguchi M, Tada H, Mitsudomi T, Seto T, Yokoi K, Katakami N, et al. Phase III study of adjuvant gemcitabine compared with adjuvant uracil-tegafur in patients with completely resected pathological stage IB-IIIA non-small cell lung cancer (WJTOG0101). International Journal of Clinical Oncology. 2021:2216-23.

72. Park J, Lee C, Lee H, Baek H, Zo J, Shim Y. Postoperative adjuvant chemotherapy for stage I non-small cell lung cancer. European Journal of Cardio-Thoracic Surgery. 2005:1086-91.

73. Yue D, Xu S, Wang Q, Li X, Shen Y, Zhao H, et al. Updated overall survival and exploratory analysis from randomized, phase II EVAN study of erlotinib versus vinorelbine plus cisplatin adjuvant therapy in stage IIIA epidermal growth factor receptor+ non-small-cell lung cancer. Journal of Clinical Oncology. 2022:3912-7.

74. Arriagada R, Dunant A, Pignon J, Bergman B, Chabowski M, Grunenwald D, et al. Long-term results of the international adjuvant lung cancer trial evaluating adjuvant Cisplatin-based chemotherapy in resected lung cancer. Journal of Clinical Oncology. 2010:35-42.

75. Felip E, Rosell R, Maestre J, Rodriguez-Paniagua J, Moran T, Astudillo J, et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. Journal of Clinical Oncology. 2010:3138-45.

76. Ou W, Sun H, Ye X, Zhang B, Yang H, Fang Q, et al. Adjuvant carboplatin-based chemotherapy in resected stage IIIA-N2 non-small cell lung cancer. Journal of Thoracic Oncology. 2010:1033-41.

77. Strauss G, Herndon J, Maddaus M, Johnstone D, Johnson E, Harpole D, et al. Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non-small-cell lung cancer: CALGB 9633 with the cancer and leukemia group B, radiation therapy oncology group, and north central cancer treatment group study groups. Journal of Clinical Oncology. 2008:5043-1.

78. Roselli M, Mariotti S, Ferroni P, Laudisi A, Mineo D, Pompeo E, et al. Postsurgical chemotherapy in stage IB nonsmall cell lung cancer: Long-term survival in a randomized study. International Journal of Cancer. 2006:955-60.

79. Fukumoto S, Oizumi S, Harada M, Sukoh N, Nakano K, Fuke S, et al. A randomized phase II trial of cisplatin plus gemcitabine versus carboplatin plus gemcitabine in patients with completely resected non-small cell lung cancer: Hokkaido Lung Cancer Clinical Study Group Trial (HOT0703). Cancer Chemotherapy and Pharmacology. 2020:117-27.

80. Andreas S, Chouaid C, Danson S, Siakpere O, Benjamin L, Ehness R, et al. Economic burden of resected (stage IB-IIIA) non-small cell lung cancer in France, Germany and the United Kingdom: A retrospective observational study (LuCaBIS). Lung cancer (Amsterdam, Netherlands). 2018;124:298-309.

81. Bendixen M, Kronborg C, Jorgensen OD, Andersen C, Licht PB. Cost-utility analysis of minimally invasive surgery for lung cancer: A randomized controlled trial. European Journal of Cardio-thoracic Surgery. 2019;56(4):754-61.

82. Black WC, Gareen IF, Soneji SS, Sicks JD, Keeler EB, Aberle DR, et al. Costeffectiveness of CT screening in the National Lung Screening Trial. The New England journal of medicine. 2014;371(19):1793-802.

83. Blom EF, Haaf K, de Koning HJ. Systematic Review and Meta-Analysis of Community- and Choice-Based Health State Utility Values for Lung Cancer. PharmacoEconomics. 2020;38(11):1187-200.

84. Brocki BC, Andreasen JJ, Westerdahl E. Inspiratory Muscle Training in High-Risk Patients Following Lung Resection May Prevent a Postoperative Decline in Physical Activity Level. Integrative Cancer Therapies. 2018;17(4):1095-102.

85. Grutters JP, Joore MA, Wiegman EM, Langendijk JA, de Ruysscher D, Hochstenbag M, et al. Health-related quality of life in patients surviving non-small cell lung cancer. Thorax. 2010;65(10):903-7.

86. Dolan P. Modeling valuations for EuroQol health states. Medical care. 1997;35(11):1095-108.

87. Ilonen IK, Rasanen JV, Knuuttila A, Sihvo EI, Sintonen H, Sovijarvi ARA, et al. Quality of life following lobectomy or bilobectomy for non-small cell lung cancer, a twoyear prospective follow-up study. Lung cancer (Amsterdam, Netherlands). 2010;70(3):347-51.

88. Jang RW, Le Maitre A, Ding K, Winton T, Bezjak A, Seymour L, et al. Qualityadjusted time without symptoms or toxicity analysis of adjuvant chemotherapy in nonsmall-cell lung cancer: An analysis of the National Cancer Institute of Canada Clinical Trials Group JBR.10 trial. Journal of Clinical Oncology. 2009;27(26):4268-73.

89. Jang RW, Isogai PK, Mittmann N, Bradbury PA, Shepherd FA, Feld R, et al. Derivation of utility values from European Organization for Research and Treatment of Cancer Quality of Life-Core 30 questionnaire values in lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2010;5(12):1953-7.

90. Jeppesen SS, Matzen LE, Brink C, Bliucukiene R, Kasch S, Schytte T, et al. Impact of comprehensive geriatric assessment on quality of life, overall survival, and unplanned admission in patients with non-small cell lung cancer treated with stereotactic body radiotherapy. Journal of geriatric oncology. 2018;9(6):575-82.

91. Jeppesen S, Hansen O, Matzen L. Does CGA impact QOL and overall survival in NSCLC patients treated with SBRT - Results of a randomized pilot study. Journal of Thoracic Oncology. 2017;12(11 Supplement 2):S2403.

92. Khan I, Morris S, Pashayan N, Matata B, Bashir Z, Maguirre J. Comparing the mapping between EQ-5D-5L, EQ-5D-3L and the EORTC-QLQ-C30 in non-small cell lung cancer patients. Health and quality of life outcomes. 2016;14:60.

93. van Hout B, Janssen MF, Feng YS, Kohlmann T, Busschbach J, Golicki D, et al. Interim scoring for the EQ-5D-5L: mapping the EQ-5D-5L to EQ-5D-3L value sets. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research. 2012;15(5):708-15.

94. Kim EJ, Ock M, Kim KP, Jung NH, Lee HJ, Kim SH, et al. Disease severity-based evaluation of utility weights for lung cancer-related health states in Korea. BMC Cancer. 2018;18(1):1081.

95. Koide R, Kikuchi A, Miyajima M, Mishina T, Takahashi Y, Okawa M, et al. Quality assessment using EQ-5D-5L after lung surgery for non-small cell lung cancer (NSCLC) patients. General thoracic and cardiovascular surgery. 2019;67(12):1056-61.

 Manser RL, Wright G, Byrnes G, Hart D, Conron M, Carter R, et al. Validity of the Assessment of Quality of Life (AQoL) utility instrument in patients with operable and inoperable lung cancer. Lung cancer (Amsterdam, Netherlands). 2006;53(2):217-29.
 Naik H, Howell D, Su S, Qiu X, Brown MC. Vennettilli A, et al. EQ-5D Health Utility

97. Naik H, Howell D, Su S, Qiu X, Brown MC, Vennettilli A, et al. EQ-5D Health Utility Scores: Data from a Comprehensive Canadian Cancer Centre. The patient. 2017;10(1):105-15.

98. Rauma V, Andersson S, Robinson EM, Rasanen JV, Sintonen H, Salo JA, et al. Thoracotomy and VATS Surgery in Local Non-Small-Cell Lung Cancer: Differences in Long-Term Health-Related Quality Of Life. Clinical Lung Cancer. 2019;20(5):378-83.

99. Sharples LD, Jackson C, Wheaton E, Griffith G, Annema JT, Dooms C, et al. Clinical effectiveness and cost-effectiveness of endobronchial and endoscopic ultrasound relative to surgical staging in potentially resectable lung cancer: Results from the ASTER randomised controlled trial. Health Technology Assessment. 2012;16(18):1-81.

100. Swan JS, Lennes IT, Stump NN, Temel JS, Wang D, Keller L, et al. A Patient-Centered Utility Index for Non-Small Cell Lung Cancer in the United States. MDM policy & practice. 2018;3(2):2381468318801565.

101. Tramontano AC, Schrag DL, Malin JK, Miller MC, Weeks JC, Swan JS, et al. Catalog and comparison of societal preferences (utilities) for lung cancer health states: results from the Cancer Care Outcomes Research and Surveillance (CanCORS) study. Medical decision making : an international journal of the Society for Medical Decision Making. 2015;35(3):371-87.

102. Trippoli S, Vaiani M, Lucioni C, Messori A. Quality of life and utility in patients with non-small cell lung cancer. Quality-of-life Study Group of the Master 2 Project in Pharmacoeconomics. Pharmacoeconomics. 2001;19(8):855-63.

103. Vogel J, Wang X, Troxel AB, Simone CB, Rengan R, Lin LL. Prospective assessment of demographic characteristics associated with worse health related quality of life measures following definitive chemoradiation in patients with locally advanced non-small cell lung cancer. Translational Lung Cancer Research. 2019;8(4):332-9.

104. Witlox WJA, Ramaekers BLT, Joore MA, Dingemans AMC, Praag J, Belderbos J, et al. Health-related quality of life after prophylactic cranial irradiation for stage III nonsmall cell lung cancer patients: Results from the NVALT-11/DLCRG-02 phase III study. Radiotherapy and Oncology. 2020;144:65-71.

105. Wolff HB, Alberts L, Kastelijn EA, Lissenberg-Witte BI, Twisk JW, Lagerwaard FJ, et al. Differences in Longitudinal Health Utility between Stereotactic Body Radiation
Therapy and Surgery in Stage I Non-Small Cell Lung Cancer. Journal of Thoracic Oncology. 2018;13(5):689-98.

106. Longworth L, Yang Y, Young T, Mulhern B, Hernández Alava M, Mukuria C, et al. Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: a systematic review, statistical modelling and survey. Health technology assessment (Winchester, England). 2014;18(9):1-224.

107. Yang SC, Lai WW, Chang HY, Su WC, Chen HH, Wang JD. Estimation of loss of quality-adjusted life expectancy (QALE) for patients with operable versus inoperable lung cancer: adjusting quality-of-life and lead-time bias for utility of surgery. Lung cancer (Amsterdam, Netherlands). 2014;86(1):96-101.

108. Yang SC, Kuo CW, Lai WW, Lin CC, Su WC, Chang SM, et al. Dynamic Changes of Health Utility in Lung Cancer Patients Receiving Different Treatments: A 7-Year Followup. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2019;14(11):1892-900.

109. Mahal AR, Cramer LD, Wang EH, Wang S, Davidoff AJ, Gross CP, et al. Did quality of life for older cancer survivors improve with the turn of the century in the United States? Journal of geriatric oncology. 2021;12(1):102–5.

110. Sigel K, Yin Kong C, Leiter A, Kale M, Mhango G, Huang B, et al. Assessment of treatment strategies for stage I non-small cell lung cancer in patients with comorbidities. Lung cancer (Amsterdam, Netherlands). 2022;170:34-40.

111. Jin R, Zhang Z, Zheng Y, Niu Z, Sun S, Cao Y, et al. Health-Related Quality of Life Following Robotic-Assisted or Video-Assisted Lobectomy in Patients With Non-Small Cell Lung Cancer: Results From the RVlob Randomized Clinical Trial. Chest. 2023;163(6):1576-88. Patel YS, Baste J-M, Shargall Y, Waddell TK, Yasufuku K, Machuca TN, et al. Robotic Lobectomy is Cost-Effective and Provides Comparable Health Utility Scores to Video-Assisted Lobectomy: Early Results of the RAVAL Trial. Ann Surg. 2023.
 Zhou Y, Shi X, Chen H, Mao B, Song X, Gao L, et al. Tumor Immune Microenvironment Characterization of Primary Lung Adenocarcinoma and Lymph Node Metastases. BioMed Research International. 2021;2021 (no pagination)(5557649).

Appendix A. Main characteristics of studies included

Table 52 Main characteristic of studies included

Trial name: ALINA (BO40366) NCT number: NCT03456076	
Objective	To evaluate the efficacy of alectinib compared with platinum-based chemotherapy in adjuvant treatment of ALK-positive NSCLC.
Publications — title, author, journal, year	• Final manuscript will be published April 2024 in NEJM.
	• ALINA: efficacy and safety of adjuvant alectinib versus chemo- therapy in patients with early-stage ALK+ non-small cell lung cancer (NSCLC); R Shah et al.; Presented at 36TH GERMAN CANCER CONGRESS, 21-24 February 2024.
	• ALINA: Efficacy and safety of adjuvant alectinib versus chemo- therapy in patients with early-stage ALK+ non-small cell lung cancer (NSCLC); BJ Solomon et al.; Presented at ESMO, Octo- ber 2023. (8)
	 ALINA: A phase III study of alectinib versus chemotherapy as adjuvant therapy in patients with stage IB–IIIA anaplastic lym- phoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC); BJ Solomon et al.; Journal of Clinical Oncology, 2019. (63)
Study type and design	ALINA (BO40336) is phase III, open-label, randomised study.
	Enrolled patients were randomised 1:1 via an interactive voice or Web- based response system (IxRS) and stratified by extent of disease (Stage IB [tumors ≥4 cm] vs. Stage II vs. Stage IIIA) and race (Asian vs. non- Asian). No crossover was allowed.
	First Patient Enrolled: 16 Aug 2018 Last patient Enrolled: 8 Dec 2021 CCOD: 26 June 2023
	ALINA is still ongoing and is expected to be completed in 2026.
Sample size (n)	257
Main inclusion criteria	 Age ≥18 years Complete resection of histologically confirmed Stage IB (tumor ≥ 4 cm) to Stage IIIA (T2-3 N0, T1-3 N1, T1-3 N2, T4 N0-1) NSCLC as per Union Internationale Contre le Cancer / American Joint Committee on Cancer, 7th edition, with negative margins, at 4-12 weeks before enrollment

	 If mediastinoscopy was not performed preoperatively, it is expected that, at a minimum, mediastinal lymph node systematic sampling will have occurred
	 Documented ALK-positive disease according to an FDA-approved and CE-marked test
	 Eligible to receive a platinum-based chemotherapy regimen ac- cording to the local labels or guidelines
	 Eastern Cooperative Oncology Group Performance Status of Grade 0 or 1
	Adequate hematologic and renal function
	 For women of childbearing potential: agreement to remain abstinent or use contraceptive methods with a failure rate of < 1% per year during the treatment period and for at least 90 days after the last dose of alectinib or according to local labels or guidelines for chemotherapy
	 For men: agreement to remain abstinent or use contraceptive measures, and agreement to refrain from donating sperm for at least 90 days after the last dose of alectinib or according to local labels or guidelines for chemotherapy. Men must refrain from do- nating sperm during this same period
	 Willingness and ability to comply with scheduled visits, treatment plans, laboratory tests, and other study procedures
Main exclusion criteria	 Pregnant or breastfeeding, or intending to become pregnant dur- ing the study or within 90 days after the last dose of alectinib or according to local labels or guidelines for chemotherapy
	Prior adjuvant radiotherapy for NSCLC
	Prior exposure to systemic anti-cancer therapy and ALK inhibitors
	 Stage IIIA N2 patients that, in the investigator's opinion, should re- ceive post-operative radiotherapy treatment are excluded from the study
	 Known sensitivity to any component of study drug to which the patient may be randomized. This includes, but is not limited to, pa- tients with galactose intolerance, a congenital lactase deficiency or glucose-galactose malabsorption.
	 Malignancies other than NSCLC within 5 years prior to enrollment, except for curatively treated basal cell carcinoma of the skin, early gastrointestinal (GI) cancer by endoscopic resection, in situ carci- noma of the cervix, ductal carcinoma in situ, papillary thyroid can- cer, or any cured cancer that is considered to have no impact on disease free survival or overall survival for the current NSCLC
	 Any GI disorder that may affect absorption of oral medications, such as malabsorption syndrome or status post-major bowel re- section
	 Liver disease characterized by aspartate transaminase and alanine transaminase >= 3 × upper limit of normal or impaired excretory
	function or synthetic function or other conditions of decompen- sated liver disease such as coagulopathy, hepatic encephalopathy, hypoalbuminemia, ascites, or bleeding from esophageal varices or active viral or active autoimmune, alcoholic, or other types of acute hepatitis
---------------	--
	 Japanese patients participating in the serial/intensive PK sample collection only: administration of strong/potent CYP450 3A inhibi- tors or inducers within 14 days prior to the first dose of study treatment and while on treatment with alectinib up to Week 3
	 Any exclusion criteria based on the local labels or guidelines for chemotherapy regimen
	Patients with symptomatic bradycardia
	History of organ transplant
	Known HIV positivity or AIDS-related illness
	• Any clinically significant concomitant disease or condition that could interfere with-or for which the treatment might interfere with the conduct of the study or the absorption of oral medications or that would pose an unacceptable risk to the patients in this study, in the opinion of the Principal Investigator
	 Any psychological, familial, sociological, or geographical condition potentially hampering compliance with the study protocol require- ments and/or follow-up procedures; those conditions should be discussed with the patient before trial entry
Intervention	Alectinib
	130 participants were enrolled in the alectinib arm.
	Participants received alectinib 600 mg orally twice daily until comple- tion of treatment period (24 months) or recurrence of disease, unac- ceptable toxicity, withdrawal of consent or death, whichever occurs first.
Comparator(s)	Adjuvant Platinum-Based Chemotherapy
	127 participants were enrolled in the chemotherapy-arm.
	Cisplatin 75 milligrams per square meter (mg/m^2) on Day 1 every 21 days IV intravenously (IV) until completion of treatment period (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first.
	Vinorelbine 25 mg/m^2 IV on Days 1 and 8 Q21D until completion of treatment period (4 cycles), recurrence of disease, unacceptable tox-icity, withdrawal of consent, or death, whichever occurs first.
	Gemcitabine 1250 mg/m^2 on Days 1 and 8 Q21D IV until completion of treatment period (4 cycles), recurrence of disease, unacceptable tox- icity, withdrawal of consent, or death, whichever occurs first.

	Pemetrexed 500 mg/m ² Day 1 Q21D until completion of treatment pe- riod (4 cycles), recurrence of disease, unacceptable toxicity, withdrawal of consent, or death, whichever occurs first.							
	For participants who experience unacceptable toxicity with cisplatin, carboplatin can be used.							
Follow-up time	Median survival follow-up period at CCOD was 27.8 and 28.4 months in the alectinib and chemotherapy arms.							
Is the study used in the health economic model?	Yes							
Primary, secondary	Primary endpoint							
and exploratory endpoints	 Disease-free Survival (DFS), as Assessed by the Investigator [Time Frame: From the date of randomization until the first DFS event, up to approximately 5 years] 							
	Secondary endpoint							
	 Overall Survival (OS) [Time Frame: From the date of randomi- zation until death due to any cause up to approximately 8 years] 							
	 Plasma Concentration of Alectinib [Time Frame: Predose (2 hours) at Baseline, Week 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, and 96] 							
	 Plasma Concentration of Alectinib metabolite [Time Frame: Predose (2 hours) at Baseline, Week 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, and 96] 							
	• Percentage of Participants with Adverse Advent [Time Frame: From the date of randomization up to approximately 2 years]							
	[State all primary, secondary and exploratory endpoints of the study, regardless of whether results are provided in this application. Definition of included outcomes and results must be provided in Appendix D.]							
	Endpoints included in this application:							
	DFS as assessed by the investigator							
	OS							
	Safety							
Method of analysis	All efficacy analyses were intention-to-treat population and stage II-IIIA population analyses. We used the Kaplan–Meier method to estimate rates of disease-free survival and overall survival.							
Subgroup analyses	Stage II-IIIA population (see description in the application)							

Other relevant N/A information

Appendix B. Efficacy results per study

Table 53 Results per study

Results of A	Results of ALINA (NCT: NCT03456076)											
				Estimated a	bsolute differe	nce in effect	Estimated relative difference in effect			Description of methods used for estimation	References	
Outcome	Study arm	N	Result (Cl)	Difference	95% CI	P value	Difference	95% CI	P value			
No. of pt with DFS-	Alectinib	116	14 (12.1%)	N/A	N/A	N/A	N/A	N/A	N/A			
events	Chemotherapy	115	45 (39.1%)									
(Stage II–IIIA)												
Median	Alectinib	116	NE (NE, NE)	N/A	N/A	N/A	HR: 0.24	0.13-0.45	<0.0001	Kaplan-Meier estimates with		
DFS (Stage	Chemotherapy	motherapy 115 44.4 (2	44.4 (27.8, NE)							95% CI computed using the method of Brookmeyer and		
II–IIIA)										Crowley. Hazard ratios were estimated by Cox regression.		
No. of	Alectinib	116	2 (1.7%)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
deaths	Chemotherapy	115	2 (1.7%)									
(Stage II–IIIA)												
Median OS	Alectinib	116	NE (NE, NE)	N/A	N/A	N/A	HR: 0.96	0.14, 6.82	0.9676	Kaplan-Meier estimates with 95% Cl computed using the		

Results of ALINA (NCT: NCT03456076)											
				Estimated a	bsolute differer	nce in effect	Estimated relative difference in effect			Description of methods used for estimation	References
Outcome	Study arm	N	Result (Cl)	Difference	95% CI	<i>P</i> value	Difference	95% CI	<i>P</i> value		
(Stage II–IIIA)	Chemotherapy	115	NE (NE, NE)							method of Brookmeyer and Crowley. Hazard ratios were estimated by Cox regression.	
No. of pt with CNS- DFS-events	Alectinib	116	5 (4.3%)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Chemotherapy	115	16 (13.9%)								
(Stage II–IIIA)											
Median	Alectinib	116	NE (NE, NE)	N/A	N/A	N/A	HR: 0.24	0.09-0.65	0.0022	Kaplan-Meier estimates with	
time to CNS-DFS	Chemotherapy	115	NE (NE, NE)							95% CI computed using the method of Brookmeyer and	
event										Crowley. Hazard ratios were	
(Stage II–IIIA)										estimated by Cox regression.	
No. of pt	Alectinib	130	15 (11.5%)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
with DFS- events	Chemotherapy	127	50 (39.4%)								
(ITT pop.)											

Results of A	Results of ALINA (NCT: NCT03456076)										
				Estimated a	bsolute differe	nce in effect	Estimated relative difference in effect			Description of methods used for estimation	References
Outcome	Study arm	N	Result (Cl)	Difference	95% CI	P value	Difference	95% CI	P value		
Median	Alectinib	130	NE (NE, NE)	N/A	N/A	N/A	HR: 0.24	0.13-0.43	<0.0001	Kaplan-Meier estimates with	
DFS (ITT pop.)	Chemotherapy	127	43.1 (28.5, NE)							95% CI computed using the method of Brookmeyer and	
										Crowley. Hazard ratios were estimated by Cox regression	
No. of deaths	Alectinib	130	2 (1.5%)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Chemotherapy	127	4 (3.1%)								
(11 pop.)											
Median OS	Alectinib	130	NE (NE, NE)	N/A	N/A	N/A	HR: 0.46	0.08-2.25	0.3603	Kaplan-Meier estimates with	
(ITT pop.)	Chemotherapy	127	NE (NE, NE)							95% CI computed using the method of Brookmeyer and	
										Crowley. Hazard ratios were	
										estimated by Cox regression.	
No. of pt	Alectinib	130	5 (3.8%)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
with CNS- DFS-events	Chemotherapy	127	18 (14.2%)								
(ITT pop.)											
Median time to	Alectinib	130	NE (NE, NE)	N/A	N/A	N/A	HR: 0.22	0.08-0.58	0.0009	Kaplan-Meier estimates with 95% Cl computed using the	

Results of ALINA (NCT: NCT03456076)											
Estimated absolute difference in effect Estimated relative difference in effect					Description of methods used for estimation	References					
Outcome	Study arm	N	Result (Cl)	Difference	95% CI	<i>P</i> value	Difference	95% CI	<i>P</i> value		
CNS-DFS event (ITT pop.)	Chemotherapy	127	NE (NE, NE)							method of Brookmeyer and Crowley. Hazard ratios were estimated by Cox regression.	

Appendix C. Comparative analysis of efficacy

N/A.

ALINA (BO40336) is a head-to-head study which provide a direct comparison of alectinib and platinum-based chemotherapy regimens. Results are presented in Appendix B.

Appendix D. Extrapolation

All relevant methods and choices on extrapolation besides the tables below are presented in section 8.

Table 54 Disease-Free Survival ≥5 Years (Clinical SLR [Early-Stage NSCLC]; Search: September, 2023)

Study	Intervention	Disease Stage and Mutation Status	Data Cut-Off	DFS
(Shen, et al.,	Cisplatin + Paclitaxel			5-Year: 30.3%
2014)(64)	+ Radiotherapy	Stage IIIA-pN2	2009	E Veer 19.9%
	Osimortinih	Stage IP		5-Year: 18.8%
	Osimertinib			J-Teal. 7870
	Placebo	Edition), EGFR+		5-Year: 53%
	Osimertinib	Stage II		5-Year: 58%
	Placebo	(AJCC/UICC 7th Edition), EGER+		5-Year: 37%
	Osimertinib	Stage IIIA		5-Year: 49%
Adaura	Placebo	(AJCC/UICC 7th Edition), EGFR+		5-Year: 12%
(Wu, et al.,	Osimertinib	Stage IB	2022	5-Year: 78%
2022)(65)	Placebo	(AJCC/UICC 8th Edition), EGFR+		5-Year: 55%
	Osimertinib	Stage II		5-Year: 60%
	Placebo	(AJCC/UICC 8th Edition), EGFR+		5-Year: 37%
	Osimertinib	Stage IIIA		5-Year: 47%
	Placebo	(AJCC/UICC 8th Edition), EGFR+		5-Year: 15%
(Ueda, Sakada,	Futraful + Uracil			5-Year: 86%
Kuwahara, & Motohiro, 2004)(66)	Observation	Stage IA-IIIA	n.r.	5-Year: 46%
Magrit (Vansteenkiste,	MAGE-A3 immuno- therapeutic	Stage IB-IIIA, Pos-	2014	5-Year: 51.7%
et al., 2016)(67)	Placebo	A3 expression	2014	5-Year: 49.6%
ADJUVANT	Gefitinib			5-Year: 32.5%
(CTONG1104) (Zhong, et al., 2018)(56)	Cisplatin + Vi- norelbine	Stage IIA-IIIA, EGFR+	2020	5-Year: 23.2%
	Observation			5-Year: 66.5%
(Imaizumi,	Tegafur + Uracil	Stage I	p r	5-Year: 68.8%
2005)(68)	Cisplatin + UFT + Vindesine	Stage	1.1.	5-Year: 81.1%
(Okuda, et al.,	Carboplatin + Paclitaxel	Stage II-IIIA	n.r.	5-Year: 54.2%
2010](05]	S-1			5-Year: 70.4%
IMPACT	Gefitinib	Stage II-IIIA.		5-Year: 31.8%
(Tada, et al., 2022)(70)	Cisplatin + Vi- norelbine	EGFR+	2020	5-Year: 34.1%
WJTOG0101	Gemcitabine			5-Year: 55%
(Yamaguchi, et al., 2021)(71)	Tegafur + Uracil	Stage IB-IIIA	2005	5-Year: 50%

(Park, et al.,	Cisplatin + Mitomycin C + Vinblastine	Store I	2002	5-Year: 88.8% 10-Year: 76.8%
2005) (72)	Cisplatin + Mitomycin C + Vinblastine	Stage I	2003	5-Year: 64.8% 10-Year: 54.8%
EVAN (Yue, et al., 2022)(73)	Erlotinib	Stage I-IV, EGFR+	n.r.	5-Year: 48.2%
IALT (Arriagada, et	Cisplatin-based chemotherapy	Stage I-III	2005	5-Year: 39.4%
(Felip, et al.,	Carboplatin + Paclitaxel	Stage IA (>2cm)-	2019	5-Year: 36.6%
2010)(75)	Observation	Stage III (IVI)		5-Year: 34.1%
(Ou, et al., 2010)(76)	Carboplatin + Vi- norelbine or Car- boplatin + Paclitaxel	Stage IIIA	2009	5-Year: 17.9%
	Observation			5-Year: 14.7%
CALGB9633 (Strauss et al	Carboplatin + Paclitaxel	Stage IB	D.C.	5-Year: 52% 6-Year: 51%
2008)(77)	Observation	Stage ib		5-Year: 48% 6-Year: 46%
(Roselli, et al.,	Cisplatin + Etoposide	Stage IB	p.r.	5-Year: 55% 10-Year: 34%
2006)(78)	Observation	Stage ID	1.1.	5-Year: 20% 10-Year: 9%
HOT0703	Cisplatin + Gemcita- bine	Stage IP IIIA	2017	5-Year: 40.6%
al., 2020)(79)	Carboplatin + Gem- citabine	Stage ID-IIIA	2017	5-Year: 59%

Table 55 Summary of assumptions associated with extrapolation of DFS

Method/approach	Description/assumption
Data input	ALINA (BO40336) CCOD: June 26, 2023 (9)
Model	All standard parametric distributions have been tested.
Assumption of proportional haz- ards between intervention and comparator	Yes
Function with best AIC fit	Log-Logistic
Function with best BIC fit	Log-Logistic
Function with best visual fit	Log-Logistic
Function with best fit according to evaluation of smoothed hazard as- sumptions	Log-Logistic

Validation of selected extrapolated curves (external evidence)	See Table 54
Function with the best fit according to external evidence	Not applicable
Selected parametric function in base case analysis	Log-Logistic
Adjustment of background mortal- ity with data from Statistics Den- mark	Yes
Adjustment for treatment switch- ing/cross-over	No
Assumptions of waning effect	No
Assumptions of cure point	Yes. 95% of patients are considered cured after 5 years follow up (28).

Appendix E. Serious adverse events

MedDRA System Organ Class MedRA Preferred Term	Ale (N	ctiniì ⊨128)	b Che	motherapy (N=120)	7
Total number of patients with at least one adverse event		17 (1	13.3%)	10 (8.3	3%)
Overall total number of events		20		16	
Infections and infestations Total number of patients with at least one adverse event Total number of events Appendicitis Pneumonia Influenza Lower respiratory tract infection Pneumonia viral Urinary tract infection Urosepsis	11 4 3 1 1 1 0	(8.6%) 11 (3.1%) (2.3%) (0.8%) (0.8%) (0.8%) (0.8%)) 2) 0 1 0 0 0 0 1 0 0	(1.7%) 2 (0.8%) (0.8%)	
Gastrointestinal disorders Total number of patients with at least one adverse event Total number of events Nausea Abdominal pain Colitis Epigastric discomfort Gastritis erosive Ileus paralytic Pancreatitis acute Regurgitation Vomiting	2 0 0 0 1 1 0 0	(1.6%) (0.8%) (0.8%)) 4 8 2 1 1 0 0 0 1 1 1	(3.3%) (1.7%) (0.8%) (0.8%) (0.8%) (0.8%) (0.8%) (0.8%)	
Respiratory, thoracic and mediastinal disorders Total number of patients with at least one adverse event Total number of events Dyspncea Pheumonitis Pulmonary embolism	2 1 1 0	(1.6%) 2 (0.8%) (0.8%)) 1) 0) 0 1	(0.8%) 1 (0.8%)	
Cardiac disorders Total number of patients with at least one adverse event Total number of events Acute myocardial infarction	2 2 2	(1.6%) (1.6%)			
Investigations Total number of patients with at least one adverse event Total number of events Neutrophil count decreased	0000		2 2 2	(1.7%) (1.7%)	
Reproductive system and breast disorders Total number of patients with at least one adverse event Total number of events Benign prostatic hyperplasia Uterine prolapse	2 2 1 1	(1.6%) (0.8%) (0.8%)			
Blood and lymphatic system disorders Total number of patients with at least one adverse event Total number of events Febrile neutropenia	0000		1 1 1	(0.8%) (0.8%)	
General disorders and administration site conditions Total number of patients with at least one adverse event Total number of events Fatigue	0000		1 1 1	(0.8%) (0.8%)	
Neoplasms benign, malignant and unspecified (incl cysts and polyps) Total number of patients with at least one adverse event Total number of events Bladder cancer	1 1 1	(0.8%) (0.8%)			
Vascular disorders Total number of patients with at least one adverse event Total number of events Embolism	0000		1 1 1	L (0.8%) L L (0.8%)	

Table 56 Adverse events applied in the health economic model

Occurrence of Adverse	Non-Metastatic Recurrence									
Events		Chemoradiotherapy								
Reference	ALINA; Safety-E	ALINA; Safety-Evaluable Patients; Control Arm; CCOD: June 26, 2023								
	Metastatic Recurrence (First-Line)									
	Alectinib	Crizotinib	Brigatinib	Lorlatinib						
Median Follow-Up Du- ration	27.8 months	29.3 months	40.4 months	36.7 months						
Sample Size	152	142	136	149						

Definition of AEs		Number of the	Number of so	Number of pa-
		Number of pa-	Number of pa-	tients with
	Number of pa-	cients with	tients with	grade 3-4 ad-
	tients with	grade 3-4 ad-	treatment-	verse events
	grade 3-5 ad-	that differed by	ernergent	that differed
	verse events	that unifered by	graue 3-5 au-	by more than
	reported in ≥	more than 10	verse events	10 percentage
	2 patients (Ta-	percentage	reported in at	points be-
	ble S4)	points between	ledst 2% Of	tween treat-
		(Table SE)	patients (Ta-	ment arms
		(Table SS)	ble 2)	(Table S5)
Alanine aminotransfer-	7	6	6	Л
ase increased	,	0	0	
Aspartate aminotrans-	Q	5	6	3
ferase increased	0	5	0	5
Blood CPK	5	n.r.	n.r.	n.r.
Blood bilirubin in-	3	n.r.	n.r.	n.r.
creased	5			
Blood creatinine in-	2	n.r.	36	n.r.
creased	2		50	
Gamma-glutamyltrans-	1	nr	3	n.r.
ferase increased	-		5	
Neutrophil count de-	0	nr	1	n.r.
creased	0	11.1 .		
Anemia	8	4	4	5
Neutropenia	0	n.r.	2	n.r.
Pulmonary embolism	2	n.r.	3	n.r.
Pleural effusion	2	n.r.	2	n.r.
Pneumonia	4	n.r.	7	n.r.
Pneumothorax	2	n.r.	n.r.	n.r.
Urinary tract infection	4	n.r.	1	n.r.
Hyponatremia	3	n.r.	n.r.	n.r.
Hypokalemia	2	n.r.	n.r.	n.r.
Lung infection	3	n.r.	n.r.	n.r.
Bronchitis	2	n.r.	n.r.	n.r.
Nausea	1	3	3	1
Vomiting	0	2	2	1
Diarrhea	1	1	3	2
Acute kidney injury	4	n.r.	n.r.	n.r.
Confusional state	1	nr	nr	nr
Rash	3	n.r.	n.r.	n.r.
Death	2	nr	nr	nr
Hyperbilirubinemia	2	n r	n r	nr
Arthralgia	1	0	n r	1
Hypercholesterolaemia	nr	0	n.r.	29
Hypertriglyceridaemia	n.r.	0	n.r.	34
Oedema	n.r.	2	n.r.	6
Weight increased	n.r.	2	n.r.	30
Perinheral neuronathy	n.r.	1	n.r.	30
	n.r.	0	n.r.	5
Hyportonsion	n.r.	1	10	17
Constinution	nr	1	13	1/
Vision disorder	11.1. nr	1		0
	11.1.	1		0
	n.r.	0	n.r.	2
	n.r.	U	n.r.	3
Decreased appetite	n.r.	4	1	U
Lipase increased	n.r.	n.r.	21	n.r.

Amylase increased	n.r.	n.r.	8	n.r.
Neoplasm progression	n.r.	n.r.	4	n.r.
Blood alkaline phos-	n.r.	n.r.	4	n.r.
phate increased			4	
Dyspnea	n.r.	n.r.	3	n.r.
Hypophosphatemia	n.r.	n.r.	3	n.r.
Headache	n.r.	n.r.	3	n.r.
Upper abdominal pain	n.r.	n.r.	1	n.r.
Reference		(Camidge, et a	l., 2019) (29)	
		Metastatic Recurre	nce (Second-Line)	
	Alectinib	Ceritinib	Cisplatin + Pemetreved	
Median Follow-Un Du-			remetrexed	
ration	6.5 months	16.6 months	5.8 months	-
Sample Size	70	115	34	-
Definition of AEs	Number of pa-		Number of pa-	
	tients with		tients with	
	grade 3-5 ad-	Number of pa-	grade 3-5 ad-	
	verse events	tients with	verse events	
	occurring in	grade 3-4 ad-	occurring in	
	more than 1	verse events	more than 1	-
	patient in ei-	(Appendix Table	patient in ei-	
	ther treat-	5)	ther treat-	
	ment arm (Ta-		ment arm (Ta-	
	ble S8)		ble S8)	
Asthenia	2	6	1	-
Pneumonia	2	6	0	-
Syncope	2	0	0	-
Fatigue	0	6	3	-
Anemia	1	nr	2	-
Neutropenia	0	1	4	-
Febrile neutropenia	0	0	2	-
Stomatitis	0	n.r.	2	-
Acute kidney injury	2	n.r.	0	-
Diarrhoea	n.r.	5	n.r.	-
Nausea	n.r.	9	n.r.	-
Vomiting	n.r.	9	n.r.	-
Alanine aminotransfer-	n.r.		n.r.	_
ase increased		24		
Decreased appetite	n.r.	2	n.r.	-
Aspartate aminotrans-	n.r.	16	n.r.	-
terase increased		2		
Read alkaling phase		3		-
phate increased	n.r.	7	n.r.	-
Abdominal pain	n.r.	1	n.r.	-
Back pain	n.r.	1	n.r.	-
Headache	n.r.	1	n.r.	-
Glutamyltransferase in-	n.r.	-	n.r.	-
creased		24		
Pyrexia	n.r.	2	n.r.	-
Abdominal pain upper	n.r.	1	n.r.	-
Dyspnoea	n.r.	6	n.r.	-
Non-cardiac chest pain	n.r.	1	n.r.	-

Electrocardiogram Qt prolonged	n.r.	1	n.r.	-
Hypokalaemia	n.r.	6	n.r.	-
Pain	n.r.	1	n.r.	-
Pericardial effusion	n.r.	3	n.r.	-
Pleural effusion	n.r.	3	n.r.	-
Respiratory tract infec- tion	n.r.	1	n.r.	-
Blood lactate dehydro- genase increased	n.r.	1	n.r.	-
Dehydration	n.r.	2	n.r.	-
Muscular weakness	n.r.	2	n.r.	-
Hyperglycaemia	n.r.	6	n.r.	-
Amylase increased	n.r.	5	n.r.	-
Malaise	n.r.	1	n.r.	-
Pain in extremity	n.r.	1	n.r.	_
General physical health	n.r.	-	n.r.	_
deterioration		5		
Hyponatraemia	n.r.	2	n.r.	-
Chest pain	n.r.	1	n.r.	-
Creatinine renal clear-	n.r.	1	n.r.	-
Depression	n.r.	1	n.r.	-
Dysnhagia	n r	1	nr	-
Dyspridgia	n r	1	n r	
Respiratory failure	n r	2	n r	
C-reactive protein in-	n.r.	5	n.r.	_
creased		1		
Cognitive disorder	n.r.	1	n.r.	-
Epilepsy	n.r.	2	n.r.	-
Lower respiratory tract	n.r.	1	n.r.	-
Lymphocyte count de-	n.r.	1	n.r.	-
Myocardial ischemia	n r	1	nr	-
Transaminases in-	n r	1	n r	
creased		1		
Angina pectoris	n.r.	1	n.r.	-
Aphasia	n.r.	1	n.r.	-
Atrial flutter	n.r.	1	n.r.	-
Biliary tract infection	n.r.	1	n.r.	-
Cerebrovascular acci- dent	n.r.	1	n.r.	-
Chronic kidney disease	n.r.	1	n.r.	-
Deep vein thrombosis	n.r.	1	n.r.	-
Depressed level of con-	n.r.	1	n.r.	-
Electrocardiogram T-	n.r.	1	n.r.	-
Faecaloma	n.r.	1	n.r.	
Gastrointestinal ob-	n.r.	<u>+</u>	n.r.	
struction		1		
Gastrointestinal perfo- ration	n.r.	1	n.r.	-

Henatic enzyme in-	nr		nr	_
crossed		1		
Hypertensive crisis	n.r.	1	n.r.	-
Hypoxia	n.r.	1	n.r.	-
Interstitial lung disease	n.r.	1	n.r.	-
Jaundice	n.r.	1	n.r.	-
Lenticular opacities	n.r.	1	n.r.	-
Loss of consciousness	n.r.	1	n.r.	-
Lung infiltration	n.r.	1	n.r.	-
Mobility decreased	n.r.	1	n.r.	-
Neutrophil count de-	n.r.	1	n.r.	-
creased		T		
Pathological fracture	n.r.	1	n.r.	-
Petit mal epilepsy	n.r.	1	n.r.	-
Pneumothorax	n.r.	1	n.r.	-
Respiratory distress	n.r.	1	n.r.	-
Tumour flare	n.r.	1	n.r.	-
Typhoid fever	n.r.	1	n.r.	-
Urinary bladder rap-	n.r.	1	n.r.	-
ture		T		
Reference	(Novello, et	(Shaw, et al.,	(Novello, et	-
	al., 2018) (31)	2017) (60)	al., 2018) (31)	

Appendix F. Health-related quality of life

Figure 40: SF-36v2 - Bodily pain

Figure 41: SF-36v2 – General health

Figure 42: SF-36v2 – Mental health

Figure 43: SF-36v2 – physical functioning

Figure 44: SF-36v2 – Role emotional

Figure 45: SF-36v2 – Role-Physical

Figure 46: SF-36v2 – Social functionning

Figure 47: SF-36v2 – Vitality

Table 57: Summary of SF-36v2 Domains and Component Summary Scores at Baseline, Week 12, Week 96 (Alectinib) and Disease Follow-Up Visit 7* (Chemotherapy) in ITT Population (Mean [SD])

Appendix G. Probabilistic sensitivity analyses

The usual probability distributions are used to generate the PSA. All distributions are presented in the tab PSA parameters in the model.

Table 58. Overview of parameters in the PSA

Input parameter	Point estimate	Lower bound	Upper bound	Probability dis- tribution
Probabilities				
Patients off treatment every month - Alectinib	Dependent on month (de- scribed fully in PSA parameter tab)	Dependent on month (de- scribed fully in PSA parameter tab)	Dependent on month (de- scribed fully in PSA parameter tab)	Beta
Patients off treatment every month – Chemo- therapy	Dependent on month (de- scribed fully in PSA parameter tab)	Dependent on month (de- scribed fully in PSA parameter tab)	Dependent on month (de- scribed fully in PSA parameter tab)	Beta
Proportion on chemotherapy	Dependent on treatment (de- scribed fully in PSA parameter tab)	Dependent on treatment (de- scribed fully in PSA parameter tab)	Dependent on treatment (de- scribed fully in PSA parameter tab)	Dirchlet
Proportion on subsequent treatment	Dependent on treatment (de- scribed fully in PSA parameter tab)	Dependent on treatment (de- scribed fully in PSA parameter tab)	Dependent on treatment (de- scribed fully in PSA parameter tab)	Dirchlet
Proportion of pa- tients that expe- rience a meta- static recurrence, non-metastatic recurrence, 2. Recurrence and death	Dependent on treatment and state (described fully in PSA pa- rameter tab)	Dependent on treatment and state (described fully in PSA pa- rameter tab)	Dependent on treatment and state (described fully in PSA pa- rameter tab)	Beta
HSUV				
Alectinib – on treatment				
Alectinib – off treatment				

Chemotherapy – on treatment				
Chemotherapy – off treatment				
After recurrence – all treatment and recurrence types				
Costs				
All AE	Dependent on AE (described fully in PSA parameter tab)	Dependent on AE (described fully in PSA parameter tab)	Dependent on AE (described fully in PSA parameter tab)	Log-normal
Resource use – Disease free				
Resource use – All recurrence				

Appendix H. Literature searches for the clinical assessment

N/A.

This application is based on the head-to-head study ALINA (BO40366) which compare adjuvant alectinib with with platinum-based chemotherapy in patients with resected ALK-positive NSCLC. Hence, a systematic literature review has not been performed.

	,					
Study/ID	Aim	Study design	Patient population	Interven-tion and compara- tor (sample size (n))	Primary outcome and follow-up period	Secondary outcome and follow-up period
ALINA (BO40336)	To evaluate the efficacy of alec- tinib compared with platinum- based chemo- therapy in adju- vant treatment of ALK-positive NSCLC	Phase III, global, multicenter, open-label, ran- domized, study of alectinib ver- sus platinum- based chemo- therapy as adju- vant therapy	Patients with completely re- sected, stage IBଆIIA, ALK-pos- itive NSCLC	Alectinib: n=130 Chemotherapy: n=127	DFS (Follow-up: 30.88 months (sd: 12.71))	CNS-DFS, OS, safety (Follow-up: 30.88 months (sd: 12.71))

Table 59 Overview of study design for	studies included in the analyses
---------------------------------------	----------------------------------

Appendix I. Literature searches for healthrelated quality of life

I.1 Health-related quality-of-life search

As part of the evidence generation strategy for atezolizumab and alectinib in the adjuvant/neoadjuvant settings, a health technology assessment (HTA)-compliant systematic literature reviews (SLRs) were conducted to identify the published evidence in early-stage NSCLC on HRQoL. These will be used in the HRQoL.

Database	Platform	Relevant period for the search	Date of search completion
Embase	Ovid	1974 to 2023	28 th September 2023
Medline	Ovid	1946 to 2023	28 th September 2023
Evidence-Based Medicine (EBM) Reviews, incorporating:	Ovid		28 th September 2023
Cochrane Database of Systematic Reviews			
American College of Physicians (ACP) Journal Club		2005 to 2023	
Database of Abstracts of Reviews of Effects (DARE)		1991 to 2023	
Cochrane Clinical Answers		1 st quarter 2016	
Cochrane Central Register of Controlled Trials (CENTRAL)			
Cochrane Methodology Register		September 2023	
HTA database		August 2023	
National Health Service Economic Evaluation Database		3 rd quarter 2022	
(ואחס בבט),			
		4º quarter 2012	
		1 st quarter 2016	

Table 60 Bibliographic databases included in the literature search

Note: The EBM databases, DARE, NHS EED, and HTA, which are not updated to the present day, were also searched via the University of York Centre for Reviews and Dissemination (CRD) website: <u>https://www.crd.york.ac.uk/</u>.

The following sources were hand searched to supplement the findings of the electronic databases:

Table 61 Other sources included in the literature search

Source name	Location/source	Search strategy	Date of search
NICE	www.nice.org.uk	Hand searched	28 th September 2023
Scottish Medicines Consortium	https://scottishmedicines.org.uk/	Hand searched	28 th September 2023

Canadian Agency for Drugs and Technolo- gies in Health (CADTH)	https://www.cda-amc.ca/	Hand searched	28 th September 2023
Pharmaceutical Bene- fits Advisory Commit- tee (PBAC)	https://pbac.pbs.gov.au	Hand searched	28 th September 2023
Institute of Clinical and Economical re- view	https://icer.org/	Hand searched	28 th September 2023
Health Economics Re- search Centre	https://www.herc.ox.ac.uk/	Hand searched	28 th September 2023
Cost-effectiveness analysis (CEA) Regis- try	<u>https://cevr.tuftsmedi-</u> <u>calcenter.org/databases/cea-reg-</u> <u>istrv</u>	Hand searched	28 th September 2023
Research Papers in Economics (RePEc) website (EconPapers)	https://econpapers.repec.org/	Hand searched	28 th September 2023
International Network of Agencies for Health Technology Assess- ment (INAHTA)	https://www.inahta.org/	Hand searched	28 th September 2023
National Institute for Health Research (NIHR)	https://www.nihr.ac.uk/	Hand searched	28 th September 2023

Table 62 Conference material included in the literature search

Conference	Source of abstracts	Search strategy	Words/terms searched	Date of search
American Society of Clinical Oncology (ASCO)	https://www.asco.org/	Hand searched	"non(-)small cell lung cancer" AND "quality of life"	28 th September 2023
			"NSCLC" AND "quality of life"	
European Society for Medical Oncology (ESMO),	https://www.esmo.org/	Hand searched	"non(-)small cell lung cancer" AND "quality of life"	28 th September 2023
			"NSCLC" AND "quality of life"	
European Lung Can- cer Congress (ELCC)	https://www.esmo.org/	Hand searched	"non(-)small cell lung cancer" AND "quality of life"	28 th September 2023

			"NSCLC" AND "quality of life"	
International Associa- tion for the Study of Lung Can- cer (IASLC)/World Conference on Lung Cancer (WCLC)	https://wclc20xx.iaslc.or g/	Hand searched	"non(-)small cell lung cancer" AND "quality of life" "NSCLC" AND "quality of life"	28 th September 2023
Professional Society for Health Economics and Outcomes Re- search (ISPOR)	https://www.ispor.org/	Hand searched	"non(-)small cell lung cancer" AND "quality of life" "NSCLC" AND "quality of life"	28 th September 2023
Health Technology Assessment Interna- tional (HTAi),	https://htai.org/	Hand searched	"non(-)small cell lung cancer" AND "quality of life" "NSCLC" AND "quality of life"	28 th September 2023
Society for Medical Decision Making (SMDM)	https://smdm.org	Hand searched	"non(-)small cell lung cancer" AND "quality of life" "NSCLC" AND "quality of life"	28 th September 2023

I.1.1 Search strategies

The searches were conducted in the MEDLINE and Embase (access via the OVID interface) and the Cochrane CENTRAL database on March 2021, and updated on June 2022, July 2023 and on September 2023. Selected conference websites were searched manually to make sure that all important data, even those published as abstracts only, were identified.

Table 63 Search strategy for [Embase] 1974 to september 2023

No.	Query	Results
1	exp lung non small cell cancer/ or exp non small cell lung cancer/	155009
2	((lung* or pulmonary) adj2 (carcinom* neoplasm* or cancer* or tumo?r* or malignan*)).mp.	458920
3	non.mp.	4211990
4	2 and 3	209604
5	NSCLC.mp.	111910
6	1 or 4 or 5	256775
7	(resectable or resected).mp.	148863

NO.	Query	Results
8	(early or early-stage or early stage).mp.	2599000
9	("stage 0" or "stage 1" or "stage I" or "stage 2" or "stage II" or "stage 3*" or "stage III*").mp.	244505
10	or/7-9	2916385
11	6 and 10	58804
12	quality adjusted life year/	35406
13	(quality adjusted or adjusted life year\$).ti,ab,kw.	34123
14	(qaly\$ or qald\$ or qale\$ or qtime\$).ti,ab,kw.	27230
15	(illness state\$1 or health state\$1).ti,ab,kw.	14661
16	(hui or hui1 or hui2 or hui3).ti,ab,kw.	3124
17	(multiattribute\$ or multi attribute\$).ti,ab,kw.	1569
18	(utility adj3 (score\$1 or valu\$ or health\$ or cost\$ or measur\$ or disease\$ or mean or gain or gains or index\$)).ti,ab,kw.	31562
19	utilities.ti,ab,kw.	15151
20	(eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or euro qol or euroqol or euro qol5d or euroqol5d or euro quol or euroquol or euro quol5d or euroquol5d or eur qol or eurqol or eur qol5d or eur qol5d or eur?qul or eur?qul5d or euro\$ quality of life or european qol).ti,ab,kw.	31368
21	(euro\$ adj3 (5 d or 5d or 5 dimension\$ or 5dimension\$ or 5 domain\$ or 5domain\$)).ti,ab,kw.	9017
22	(sf36\$ or sf 36\$ or sf thirtysix or sf thirty six).ti,ab,kw.	46008
23	(time trade off\$1 or time tradeoff\$1 or tto or timetradeoff\$1).ti,ab,kw.	3565
24	"quality of life"/ and ((quality of life or qol) adj (score\$1 or meas- ure\$1)).ti,ab,kw.	33318
25	"quality of life"/ and ec.fs.	61564
26	"quality of life"/ and (health adj3 status).ti,ab,kw.	20208
27	(quality of life or qol).ti,ab,kw. and "cost benefit analysis"/	6851
28	((qol or hrqol or quality of life).ti,kw. or "quality of life"/) and ((qol or hrqol\$ or quality of life) adj2 (increas\$ or decrease\$ or improv\$ or declin\$ or reduc\$ or high\$ or low\$ or effect or effects or worse or score or scores or change\$1 or impact\$1 or impacted or deteriorat\$)).ab.	177913

No.	Query	Results
29	"cost benefit analysis"/ and (cost-effectiveness ratio\$ and (perspective\$ or life expectanc\$)).ti,ab,kw.	1229
30	"quality of life"/ and (quality of life or qol).ti.	128844
31	"quality of life"/ and ((quality of life or qol) adj3 (improv\$ or chang\$)).ti,ab,kw.	102271
32	"quality of life"/ and health-related quality of life.ti,ab,kw.	78540
33	economic model/	3272
34	or/12-33	447976
35	11 and 34	1573
36	limit 35 to yr="2023 -Current"	91

Table 64 Search strategy for MEDLINE(R) 1946 to September 2023

No.	Query	Results
1	exp Carcinoma, Non-Small-Cell Lung/	71491
2	((lung* or pulmonary) adj2 (carcinom* neoplasm* or cancer* or tumo?r* or malignan*)).mp.	231718
3	non.mp.	10847634
4	2 and 3	141086
5	NSCLC.mp.	61567
6	1 or 4 or 5	151825
7	(resectable or resected).mp.	96828
8	(early or early-stage or early stage).mp.	1913404
9	("stage 0" or "stage 1" or "stage I" or "stage 2" or "stage II" or "stage 3*" or "stage III*").mp.	134827
10	or/7-9	2103901
11	6 and 10	31571
12	Quality-Adjusted Life Years/	15834
13	(quality adjusted or adjusted life year\$).ti,ab,kf.	23872
14	(qaly\$ or qald\$ or qale\$ or qtime\$).ti,ab,kf.	14826

No.	Query	Results
15	(illness state\$1 or health state\$1).ti,ab,kf.	8489
16	(hui or hui1 or hui2 or hui3).ti,ab,kf.	1998
17	(multiattribute\$ or multi attribute\$).ti,ab,kf.	1342
18	(utility adj3 (score\$1 or valu\$ or health\$ or cost\$ or measur\$ or disease\$ or mean or gain or gains or index\$)).ti,ab,kf.	20401
19	utilities.ti,ab,kf.	9540
20	(eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or euro qol or euroqol or euro qol5d or euroqol5d or euro quol or euroquol or euro quol5d or euroquol5d or eur qol or eurqol or eur qol5d or eur qol5d or eur?qul or eur?qul5d or euro\$ quality of life or european qol).ti,ab,kf.	17662
21	(euro\$ adj3 (5 d or 5d or 5 dimension\$ or 5dimension\$ or 5 domain\$ or 5domain\$)).ti,ab,kf.	6082
22	(sf36\$ or sf 36\$ or sf thirtysix or sf thirty six).ti,ab,kf.	26822
23	(time trade off\$1 or time tradeoff\$1 or tto or timetradeoff\$1).ti,ab,kf.	2397
24	quality of life/ and ((quality of life or qol) adj (score\$1 or meas- ure\$1)).ti,ab,kf.	15790
25	quality of life/ and ec.fs.	10876
26	quality of life/ and (health adj3 status).ti,ab,kf.	11878
27	(quality of life or qol).ti,ab,kf. and Cost-Benefit Analysis/	17034
28	((qol or hrqol or quality of life).ti,kw. or "quality of life"/) and ((qol or hrqol\$ or quality of life) adj2 (increas\$ or decrease\$ or improv\$ or declin\$ or reduc\$ or high\$ or low\$ or effect or effects or worse or score or scores or change\$1 or impact\$1 or impacted or deteriorat\$)).ab.	85992
29	Cost-Benefit Analysis/ and (cost-effectiveness ratio\$ and (perspective\$ or life expectanc\$)).ti,ab,kf.	5288
30	quality of life/ and (quality of life or qol).ti.	76568
31	quality of life/ and ((quality of life or qol) adj3 (improv\$ or chang\$)).ti,ab,kf.	42162
32	quality of life/ and health-related quality of life.ti,ab,kf.	45432
33	Models, Economic/	11088
34	or/12-33	237851
35	11 and 34	608

No.	Query	Results
36	limit 35 to yr="2023 -Current"	61

Table 65 Search strategy for EBM Reviews - Cochrane Database of Systematic Reviews 2005 to September 2023

No.	Query	Results
1	exp Carcinoma, Non-Small-Cell Lung/	5747
2	((lung* or pulmonary) adj2 (carcinom* neoplasm* or cancer* or tumo?r* or malignan*)).mp.	25282
3	non.mp.	286830
4	2 and 3	16966
5	NSCLC.mp.	11349
6	1 or 4 or 5	17961
7	(resectable or resected).mp.	9534
8	(early or early-stage or early stage).mp.	151204
9	("stage 0" or "stage 1" or "stage I" or "stage 2" or "stage II" or "stage 3*" or "stage III*").mp.	32024
10	or/7-9	184908
11	6 and 10	6656
12	Quality-Adjusted Life Years/	1938
13	(quality adjusted or adjusted life year\$).ti,ab,kf.	6061
14	(qaly\$ or qald\$ or qale\$ or qtime\$).ti,ab,kf.	4897
15	(illness state\$1 or health state\$1).ti,ab,kf.	1530
16	(hui or hui1 or hui2 or hui3).ti,ab,kf.	316
17	(multiattribute\$ or multi attribute\$).ti,ab,kf.	95
18	(utility adj3 (score\$1 or valu\$ or health\$ or cost\$ or measur\$ or disease\$ or mean or gain or gains or index\$)).ti,ab,kf.	4641
19	utilities.ti,ab,kf.	1390
20	(eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or euro qol or euroqol or euro qol5d or euroqol5d or euro quol or euroquol or euro quol5d or euroquol5d or eur qol or eurqol or eur qol5d or eur qol5d or eur?qul or eur?qul5d or euro\$ quality of life or european qol).ti,ab,kf.	13112

No.	Query	Results
21	(euro\$ adj3 (5 d or 5d or 5 dimension\$ or 5 dimension\$ or 5 domain\$ or 5domain\$)).ti,ab,kf.	3798
22	(sf36\$ or sf 36\$ or sf thirtysix or sf thirty six).ti,ab,kf.	14493
23	(time trade off\$1 or time tradeoff\$1 or tto or timetradeoff\$1).ti,ab,kf.	311
24	quality of life/ and ((quality of life or qol) adj (score\$1 or meas- ure\$1)).ti,ab,kf.	3811
25	quality of life/ and ec.fs.	1946
26	quality of life/ and (health adj3 status).ti,ab,kf.	1744
27	(quality of life or qol).ti,ab,kf. and Cost-Benefit Analysis/	3920
28	((qol or hrqol or quality of life).ti,kw. or "quality of life"/) and ((qol or hrqol\$ or quality of life) adj2 (increas\$ or decrease\$ or improv\$ or declin\$ or reduc\$ or high\$ or low\$ or effect or effects or worse or score or scores or change\$1 or impact\$1 or impacted or deteriorat\$)).ab.	25705
29	Cost-Benefit Analysis/ and (cost-effectiveness ratio\$ and (perspective\$ or life expectanc\$)).ti,ab,kf.	1005
30	quality of life/ and (quality of life or qol).ti.	9810
31	quality of life/ and ((quality of life or qol) adj3 (improv\$ or chang\$)).ti,ab,kf.	9924
32	quality of life/ and health-related quality of life.ti,ab,kf.	7641
33	Models, Economic/	414
34	or/12-33	64212
35	11 and 34	377
36	limit 35 to yr="2022 -Current"	43

The eligibility criteria applied throughout the HSUV/HRQoL SLR are summarised below.

Table 66: Eligibility criteria

CRITERIA	INCLUDE	EXCLUDE
Population	Patients with early-stage NSCLC (resectable; Stage 0/1/2/3) re- ceiving treatment in the adjuvant or neoadjuvant treatment settings – no restriction with regard to patient age or mutation status Note: the primary population of interest was patients with Stage 2–3 resectable disease; however, studies considering pa- tients with Stage 1–3 disease were considered eligible during the screening process to assess the extent of evidence availa- ble.	Advanced/metastatic (Stage 4) NSCLC Mixed populations where a break- down of data for early-stage NSCLC is not provided

CRITERIA	INCLUDE	EXCLUDE
Intervention and comparators	No restriction	-
Outcomes	HSUVs (and disutilities [e.g. associated with progression or AEs]) for relevant health states (individual [patient or care-giver]) derived using the following techniques:	Outcomes not listed in "include" col- umn
	• Generic, preference-based instruments (e.g. EQ-5D, SF-6D)	
	• Direct methods (e.g. TTO, SG, VAS)	
	 Mapping algorithms allowing data from disease-specific/ge- neric measures to be mapped to preference-based HSUVs 	
	Disease-specific/generic (non-utility) HRQOL data (e.g. EORTC- QLQ-C30) (studies tagged and provided as a list)	
Study design	Studies reporting original HSUV/HRQOL data	Reviews/editorials† Case reports Pharmacokinetic studies Animal/ <i>in vitro</i> studies
Geography	No restriction; however, i8 countries (UK, France, Spain, Can- ada, Australia, Brazil, Germany and Italy), China, South Korea, Japan, and the US were primary territories of interest	-
Publication date	No restriction	-
Language	No restriction; English language publications or non-English lan- guage publications with an English abstract were of primary in- terest.	-

Abbreviations: AE, adverse event; EORTC-QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire; EQ-5D, European Quality of Life-5 Dimensions; HRQoL, health-related quality of life; HSUV, health state utility value; NSCLC, non-small cell lung cancer; SF-6D, Short Form-6 dimensions; SG, standard gamble; TTO, time trade-off; VAS, visual analogue scale.

⁺ The reference lists of any relevant review publications were checked to ensure any relevant primary studies were considered for inclusion.

The inclusion/exclusion of citations (both at the title/abstract phase and full publication review) was conducted by two independent analysts. Any disputes were referred to the project manager and resolved by consensus. Data extraction was conducted by a single analyst and quality checked for 100% of data elements by a second analyst or project lead. Disputes were referred to a third party (strategic advisor).

1.1.1 Original review (March 2021)

Electronic searches of the following databases were conducted on 18th March 2021 via the Ovid platform: Embase®, MEDLINE (including Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, and Daily), and EBM Reviews (incorporating: the Cochrane Database of Systematic Reviews; the ACP Journal Club; DARE; Cochrane Clinical Answers; Cochrane Central Register of Controlled Trials; the Cochrane Methodology Register; the HTA database; and NHS EED). The electronic databases searches were supplemented by hand searching reference lists of included studies, relevant conference proceedings (last 3 years' availability), and additional grey literature sources.

Further details of the electronic database search strategies and hand searching methodology adopted for the SLR of HSUV/HRQoL studies are provided in **Error! Reference source not found.** and **Error! Reference source not found.**, respectively.

The electronic databases identified a total of 1,987 citations. Following removal of 264 duplicates, 1,723 citations were screened on the basis of title and abstract. A total of 95 citations were considered to be potentially relevant and

were obtained for full text review, and 104 studies reporting use of generic/disease-specific HRQoL (non-utility) instruments were isolated and tagged. At the full publication review stage, a further 52 citations were excluded and an additional 38 HRQoL studies were tagged. Hand searching yielded 22 additional relevant publications (included HSUV studies, n=12; tagged HRQoL studies, n=10). This resulted in a total of 27 publications for final inclusion in the review, all of which reported HSUVs for patients with early-stage NSCLC (full publications, n=25; conference abstracts, n=2). In addition, 142 studies reporting generic and/or disease-specific HRQoL data were tagged.

June 2022 update

Electronic searches of the following databases were conducted on 22nd June 2022 via the Ovid platform: Embase[®], MEDLINE (including Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, and Daily), and EBM Reviews (incorporating: the Cochrane Database of Systematic Reviews; the ACP Journal Club; DARE; Cochrane Clinical Answers; Cochrane Central Register of Controlled Trials; the Cochrane Methodology Register; the HTA database; and NHS EED). The electronic database searches were supplemented by hand searching reference lists of included studies, relevant conference proceedings (conducted after the original search to June 2022), and additional grey literature sources.

The electronic database search identified 293 citations. After the removal of 91 duplicates from the current search and 15 duplicates from the original search (March 2021), 187 citations were screened on the basis of the title and abstract. A total of 7 publications were deemed potentially relevant and were obtained for full text review and 11 publications reporting use of generic/disease-specific HRQoL (non-utility) instruments were isolated and tagged. At the full publication review stage, a further 3 publications were excluded and 2 additional HRQoL studies were tagged. Handsearching did not yield any additional studies. This resulted in the identification of 2 HSUV publications for patients with early-stage NSCLC for final inclusion in the review update. A total of 13 studies reporting generic and/or disease-specific HRQoL data were tagged.

July 2023 update

Electronic searches of the following databases were conducted on 11th July 2023 via the Ovid platform: Embase[®], MEDLINE (including Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, and Daily), and EBM Reviews (incorporating: the Cochrane Database of Systematic Reviews; the ACP Journal Club; Cochrane Clinical Answers; and Cochrane Central Register of Controlled Trials). The electronic databases searches were supplemented by hand searching reference lists of included studies, relevant conference proceedings (conducted after the June 2022 update to July 2023), and additional grey literature sources.

The electronic database search identified 369 citations. After the removal of 91 duplicates from the current search and 59 duplicates of the previous searches (March 2021 and June 2022), 219 citations were screened on the basis of the title and abstract. A total of 11 publications were deemed potentially relevant and were obtained for full text review, and 11 publications reporting use of generic/disease-specific HRQoL (non-utility) instruments were isolated and tagged. At the full publication review stage, a further 8 publications were excluded and 1 additional HRQoL study was tagged. Handsearching yielded 1 additional relevant publication (tagged HRQoL studies, n=1). This resulted in 2 new HSUV publications for patients with early-stage NSCLC being identified for final inclusion in the SLR July update 2023 (full publications, N=1; conference abstracts, N=1). A total of 13 studies reporting generic and/or disease-specific HRQoL data were tagged.

September 2023 update

Electronic searches of the following databases were conducted on 28th September 2023 via the Ovid platform: Embase[®], MEDLINE (including Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, and Daily), and EBM Reviews (incorporating: the Cochrane Database of Systematic Reviews; the ACP Journal Club; Cochrane Clinical Answers; and Cochrane Central Register of Controlled Trials). The electronic databases searches were supplemented by hand searching reference lists of included studies, relevant conference proceedings (conducted after the July 2023 update to September 2023), and additional grey literature sources.

The electronic database search identified 166 citations. After the removal of 55 duplicates from the current search and 70 duplicates of the previous searches (March 2021, June 2022, and July 2023), 41 citations were screened on the basis of the title and abstract. A total of 3 publications were deemed potentially relevant and were obtained for full text review, and 2 publications reporting use of generic/disease-specific HRQoL (non-utility) instruments were isolated and tagged. At the full publication review stage, a further 2 publications were excluded. Handsearching yielded 4 additional relevant publications (tagged HRQoL studies, N=4). This resulted in 1 new HSUV publication for patients with early-stage NSCLC being identified for final inclusion in the SLR September update 2023 (full publications, N=1). A total of 6 studies reporting generic and/or disease-specific HRQoL data were tagged.

Overall summary

Across the original review (March 2021) and the June 2022, July 2023, and September 2023 updates, a total of 32 relevant HSUV studies were identified for inclusion (full publications, n=29; conference abstracts, n=3). The overall flow of studies through the review is summarised in the PRISMA flow diagram below

A summary of the 29 full publications is provided in Table 67. Colour coding has been used to indicate the following: GREEN: health states relevant to patients with Stage 2/3(A) disease; ORANGE: uncertainty in the method used to derive utilities (instrument and/or social tariff unclear); RED: intervention-specific health state where surgery +/- adjuvant chemotherapy was not used (e.g. relates to radiotherapy use); BLUE: both GREEN and RED criteria apply.

Study, country	Population (sample size)	Method used to derive utilities	Health states	HSUV (SD) [95% CI]	Summary of reported study conclusions and limitations	
Original re	view (N=25)					
Andreas, 2018 (80) Multi-na- tional (France, Ger-	Patients with completely re- sected Stage 1B–3A NSCLC (n=306)	Instru- ment: EQ-5D (version not speci- fied)	Patients with resected Stage 1B–3A NSCLC, dis- ease free (n=238)	0.72 [0.68, 0.75]	Conclusions: HRQoL measures suggested a higher utility score during the period of distant metastasis and/or terminal dis-	
many, and UK)		Tariff: NR	Patients with resected Stage 1B–3A NSCLC, lo- coregional recurrence (n=19)	0.62 [0.51, 0.74]	ease than in the pe- riod of locoregional re- currence. Limitations: • Limited sample size may be a source of imprecision	
			Patients with resected Stage 1B–3A NSCLC, dis- tant metasta- sis/terminal disease (n=32)	0.67 [0.55, 0.78]	 imprecision Study data not guaranteed to be representative of all sites and physicians treating patients with Stage 1B–3A NSCLC across each country External validation of medical record data not possible 	
Bendixen, 2019 (81) Denmark	Patients with Stage 1 NSCLC (n=206)	Instru- ment: EQ-5D- 3L Tariff: Danish	Patients with Stage 1 NSCLC, base- line (pre-op- erative), VATS (n=63)	0.89 (0.13)	Conclusions: VATS is a cost-effective alterna- tive to thoracotomy following lobectomy for Stage 1 lung cancer.	
	t	tariff	Patients with Stage 1 NSCLC, base- line (pre-op- erative), thoracotomy (n=61)	0.86 (0.15)	Limitations: None reported 	
			Patients with Stage 1 NSCLC, 2 weeks post- operatively, VATS (n=78)	0.78 (0.17)		

Table 67: Summary of published HSUV data associated with patients with early NSCLC (n=27)

	Patients with Stage 1 NSCLC, 2 weeks post- operatively, thoracotomy (n=80)	0.73 (0.14)
	Patients with Stage 1 NSCLC, 4 weeks post- operatively, VATS (n=78)	0.82 (0.17)
	Patients with Stage 1 NSCLC, 4 weeks post- operatively, thoracotomy (n=73)	0.75 (0.18)
	Patients with Stage 1 NSCLC, 8 weeks post- operatively, VATS (n=81)	0.85 (0.16)
	Patients with Stage 1 NSCLC, 8 weeks post- operatively, thoracotomy (n=71)	0.81 (0.13)
	Patients with Stage 1 NSCLC, 12 weeks post- operatively, VATS (n=83)	0.87 (0.14)
	Patients with Stage 1 NSCLC, 12 weeks post- operatively, thoracotomy (n=71)	0.85 (0.14)
	Patients with Stage 1 NSCLC, 26 weeks post- operatively, VATS (n=81)	0.86 (0.18)
	Patients with Stage 1	0.85 (0.14)

			NSCLC, 26 weeks post- operatively, thoracotomy (n=73)	0.%6	
			Stage 1 NSCLC, 52 weeks post- operatively, VATS (n=74)	(0.16)	
			Patients with Stage 1 NSCLC, 52 weeks post- operatively, thoracotomy (n=66)	0.84 (0.18)	
Black, 2014 (82) US	Patients with Stage 1–4 NSCLC (sample size NR)	Instru- ment: SF-6D Tariff: NR	Patients with Stage 1A NSCLC, <12 months since diagnosis	0.696	Conclusions: no conclu- sions reported relating to HRQoL Limitations:
			Patients with Stage 1A NSCLC, 12+ months since diagnosis	0.718	 Factors relating to generalisability of re- sults beyond the study setting were not considered
			Patients with Stage 1B NSCLC, <12 months since diagnosis	0.727	
			Patients with Stage 1B NSCLC, 12+ months since diagnosis	0.711	
			Patients with Stage 2 NSCLC, <12 months since diagnosis	0.600	
			Patients with Stage 2 NSCLC, 12+ months since diagnosis	0.684	
			Patients with Stage 3 NSCLC, <12 months since diagnosis	0.614	
			Patients with Stage 3 NSCLC, 12+ months since diagnosis Patients with Stage 4 NSCLC, <12 months since diagnosis Patients with Stage 4 NSCLC, 12+ months since	0.716 0.612 0.623	
--	--	--	--	--	---
Blom, 2020 (83) Multi-na- tional (re- view)	Patients with Stage 1–4 lung cancer (n=5,100 ⁺)	Instru- ment: multiple (pooled esti- mate) Tariff: multiple (pooled esti-	Patients with lung cancer, all stages (n=5,100) Patients with lung cancer, Stage 1–2 (n=1,510) Patients with	0.68 [0.61, 0.75] 0.78 [0.70, 0.86]	Conclusions: the pooled HSUVs re- ported in this study may provide the best available stage-specific HSUVs for most coun- tries. Limitations:
		mate)	lung cancer, Stage 3–4 (n=4,703)	[0.65, 0.73]	studies included in the analysis
Brocki, 2018 (84) Denmark Patients at high risk for devel- opment of post-operative pulmonary complications following lung resection due to lung cancer or diagnostic lung resections (n=68)	Patients at high risk for devel- opment of post-operative pulmonary complications following lung	Instru- ment: EQ-5D- 5L Tariff: Danish tariff (as- sumed)	Patients with lung cancer who have un- dergone re- section, males, base- line	0.855 (0.11)	Conclusions: post-op- erative inspiratory muscle training in addi- tion to standard physi- otherapy, including early mobilisation, may prevent a decline in physical activity level 2 weeks post-operatively in high-risk patients undergoing lung resec- tion. Limitations: • Relatively small number of partici- pants may limit the generalisability of re- sults to the general population undergo- ing lung cancer sur- gery
	resection due to lung cancer or diagnostic lung resections (n=68)		Patients with lung cancer who have un- dergone re- section, fe- males, base- line	0.803 (0.151)	
			Patients with lung cancer who have un- dergone re- section, 2 weeks post- operatively, mean change from baseline	-0.127 [-0.168, -0.085]	
			Patients with lung cancer who have un-	-0.016 [-0.091, 0.060]	

			dergone re- section, 2 weeks post- operatively, mean change from base- line, differ- ence be- tween inter- vention and control group		
Grutters, 2010 (85) Nether- lands	Patients treated for NSCLC be- tween 2004	Instru- ment: EQ-5D- 3L	Patients with NSCLC, initial tumour Stage 1 (n=105)	0.77 (0.26)	Conclusions: results of the present study pro- vided original data on HRQoL during survival
	and 2007 (n=245)	Tariff: UK tariff (as- sumed from	Patients with NSCLC, initial tumour Stage 2 (n=39)	0.74 (0.22)	of NSCLC; AEs were found to have a consid- erable impact on HRQoL.
		refer- ence to Dolan et al [1997] (86))	Patients with NSCLC, initial tumour Stage 3 (n=99)	0.70 (0.29)	 Limitations: Some relatively small subgroups based on initial treatment mo- dality AEs were self-re- ported by respond- ents rather than by the physician High proportion of patients treated with surgery indicated a relatively 'healthy' sample
			Patients with NSCLC, initial tumour Stage 4 (n=2)	0.86 (0.19)	
			Patients with Stage 1–4 NSCLC, recur- rence (n=34)	0.61 (0.37)	
			Patients with Stage 1–4 NSCLC, no re- currence (n=177)	0.76 (0.24)	
			Patients with Stage 1–4 NSCLC, no se- vere AE (n=200)	0.80 (0.20)	
			Patients with Stage 1–4 NSCLC, seri- ous AE (n=41)	0.45 (0.33)	
Ilonen, 2010 (87) Finland	Patients with Stage 1A–3B NSCLC who un- derwent sur- gery (lobec- tomy or bilo- bectomy) be- tween May	Instru- ment: 15D Tariff: NR	Patients with Stage 1A–3B NSCLC under- going lobec- tomy/bilo- bectomy, pre-operative (baseline) (n=53)	0.898	Conclusions: lobec- tomy and bilobectomy are associated with a significant negative long-term post-opera- tive HRQoL in patients with NSCLC.

	2002 and No- vember 2005 (n=53)		Patients with stage 1A–3B NSCLC under- going lobec- tomy/bilo- bectomy, change from baseline at 3 months post- operatively (n=48)	-0.069 (p=0.001)	 Limitations: HRQoL may be overestimated as it is generally noticed that those with advanced cancer do not complete surveys when they become too ill Seven patients (13%)
		Patients with 1A–3B NSCLC undergoing lobec- tomy/bilo- bectomy, change from baseline at 12 months post-opera- tively (n=42)	-0.059 (p=0.019)	 Study underpowered to assess impact of adjuvant or neoadju- vant therapy on HRQoL due to small patient numbers 	
			Patients with 1A–3B NSCLC undergoing lobec- tomy/bilo- bectomy, change from baseline at 24 months post-opera- tively (n=36)	-0.078 (p=0.001)	
Jang, 2009 (88) Canada	Adult patients with com- pletely re- sected early- stage (T2N0, T1N1, or T2N1)	Instru- ment: Q-TWiST (Method 1: arbi- trary	Patients with early NSCLC, TWIST state, observation arm, Method 1	1 (NR)	Conclusions: adjuvant chemotherapy in early- stage NSCLC improves quality-adjusted sur- vival despite chemo- therapy toxicity
	NSCLC receiv- ing adjuvant therapy (n=482)	values; Method 2: EORTC- QLQ- C30, global items; Method 3: EORTC- QLQ- C30, symp- tom-re- lated items;	Patients with early NSCLC, TWIST state, observation arm, Method 2	1 (NR)	Limitations: • Methods 2 and 3 in this study, using line- arly summed QoL ag- gregates, were not
			Patients with early NSCLC, TWIST state, observation arm, Method 3	1 (NR)	validated methods of utility derivation, such as TTO or SG exercises, and may underestimate true utility scores
			Patients with early NSCLC, TWIST state, observation	0.75 (NR)	

	Method 4: EQ- 5D-3L) Tariff: NR	arm, Method 4			
		Patients with early NSCLC, TWIST state, vinorelbine + cisplatin arm, Method 1	1 (NR)		
		Patients with early NSCLC, TWIST state, vinorelbine + cisplatin arm, Method 2	1 (NR)		
		Patients with early NSCLC, TWIST state, vinorelbine + cisplatin arm, Method 3	1 (NR)		
		Patients with early NSCLC, TWIST state, vinorelbine + cisplatin arm, Method 4	0.75 (NR)		
			Patients with early NSCLC, toxicity state, vinorelbine + cisplatin arm, Method 1	0.75 (NR)	
			Patients with early NSCLC, toxicity state, vinorelbine + cisplatin arm, Method 2	0.57 (0.21)	
		Patients with early NSCLC, toxicity state, vinorelbine + cisplatin arm, Method 3	0.86 (0.09)		
		Patients with early NSCLC, toxicity state, vinorelbine + cisplatin arm, Method 4	0.68 (NR)		
		Patients with early NSCLC, relapse state, observation	0.50 (NR)		

			arm, Method 1		
			Patients with early NSCLC, relapse state, observation arm, Method 2	0.50 (0.25)	
			Patients with early NSCLC, relapse state, observation arm, Method 3	0.83 (0.10)	
			Patients with early NSCLC, relapse state, observation arm, Method 4	0.60 (NR)	
			Patients with early NSCLC, relapse state, vinorelbine + cisplatin arm, Method 1	0.50 (NR)	
			Patients with early NSCLC, relapse state, vinorelbine + cisplatin arm, Method 2	0.50 (0.25)	
			Patients with early NSCLC, relapse state, vinorelbine + cisplatin arm, Method 3	0.83 (0.10)	
			Patients with early NSCLC, relapse state, vinorelbine + cisplatin arm, Method 4	0.60 (NR)	
Jang, 2010 (89) Canada	Outpatients with Stage 1–4 NSCLC (n=172)	Instru- ment: EQ-5D- 3L and	Patients with NSCLC (all stages: 1–4), baseline	0.76 (0.20) [0.73, 0.78]	Conclusions: this study demonstrates the fea- sibility of converting QoL data into utilities
		QLQ- C30 mapped	Patients with Stage 1 NSCLC (n=34),	0.80 (0.18)	for patients with NSCLC using linear modelling.

	to EQ- 5D-3L	EQ-5D-3L (ac- tual)		Limitations:
	Tariff: US tariff	Patients with Stage 1 NSCLC (n=34), EORTC-QLQ- C30 to EQ- 5D-3L (mapped, predicted)	0.80 (0.14)	 Relatively small sample size Lack of a unique population to test for external validity Population tariffs were based on a subset of the US general population.
		Patients with Stage 2 NSCLC (n=16), EQ- 5D-3L (ac- tual)	0.78 (0.23)	 which may not appropriately represent health preferences in Canadian patients with NSCLC High utility score
		Patients with Stage 2 NSCLC (n=16), EORTC-QLQ- C30 to EQ- 5D-3L (mapped, predicted)	0.80 (0.12)	may reflect a biased sample of higher performance status patients who were willing to complete the questionnaires
		Patients with Stage 3 NSCLC (n=36), EQ- 5D-3L (ac- tual)	0.73 (0.23)	
		Patients with Stage 3 NSCLC (n=36), EORTC-QLQ- C30 to EQ- 5D-3L (mapped, predicted)	0.74 (0.13)	
		Patients with Stage 4 NSCLC (n=86), EQ- 5D-3L (ac- tual)	0.75 (0.15)	
		Patients with Stage 4 NSCLC (n=86), EORTC-QLQ- C30 to EQ- 5D-3L	0.77 (0.13)	

		(mapped, predicted)	
		Patients with NSCLC (all stages), re- lapse free, chemother- apy (n=9), EQ-5D-3L (ac- tual)	0.76 (0.04)
	Patients with NSCLC (all stages), re- lapse free, chemother- apy (n=9), EORTC-QLQ- C30 to EQ- 5D-3L (mapped, predicted)	0.74 (0.06)	
		Patients with NSCLC (all stages), re- lapse free, post-chemo- therapy (n=27), EQ- 5D-3L (ac- tual)	0.76 (0.21)
		Patients with NSCLC (all stages), re- lapse free, post-chemo- therapy (n=27), EORTC-QLQ- C30 to EQ- 5D-3L (mapped, predicted)	0.76 (0.12)
		Patients with NSCLC (all stages), re- lapse free, no chemother- apy (n=34), EQ-5D-3L (ac- tual)	0.77 (0.22)
		Patients with NSCLC (all stages), re- lapse free, no chemother- apy (n=34),	0.80 (0.16)

			EORTC-QLQ- C30 to EQ- 5D-3L (mapped, predicted)		
Jeppesen, 2018 (90) Denmark (supple-	Patients with a diagnosis of T1-2N0M0 (lo- calised) NSCLC treated with	Instru- ment: EQ-5D- 5L Tariff: Danish tariff	Patients with localised NSCLC, base- line, SBRT + CGA	0.77 (0.19)	Conclusions: in pa- tients with localised NSCLC treated with SBRT, a CGA did not impact the overall
by data reported in Jeppesen et al	SBRT (n=51)		Patients with localised NSCLC, base- line, SBRT alone	0.71 (0.19)	quality of life, the prev- alence/length of un- planned admissions, or survival.
[2017] (91))			Patients with localised NSCLC, 5 weeks' follow up, SBRT + CGA	0.75 (SE 0.03)	 Limitations: Relatively small sample size makes results difficult to interpret The eligibility criteria
			Patients with localised NSCLC, 5 weeks' follow up, SBRT alone	0.70 (SE 0.03)	of the study did not select only a geriatric population, and this could potentially have diluted the ef- fect of a CGA
			Patients with localised NSCLC, 3 months' fol- low up, SBRT + CGA	0.77 (SE 0.04)	
			Patients with localised NSCLC, 3 months' fol- low up, SBRT alone	0.74 (SE 0.04)	
			Patients with localised NSCLC, 6 months' fol- low up, SBRT + CGA	0.69 (SE 0.03)	
			Patients with localised NSCLC, 6 months' fol- low up, SBRT alone	0.67 (SE 0.03)	
			Patients with localised NSCLC, 9	0.75 (SE 0.04)	

			months' fol- low up, SBRT + CGA Patients with localised NSCLC, 9 months' fol- low up, SBRT alone Patients with localised NSCLC, 12 months' fol- low up, SBRT + CGA Patients with localised NSCLC, 12	0.72 (SE 0.04) 0.75 (SE 0.04) 0.67 (SE 0.04)	
			NSCLC, 12 months' fol- low up, SBRT alone		
Khan, 2016 (92) UK	Patients with histologically confirmed Stage 1–4 NSCLC (n=98)	Instru- ment: EQ-5D (3L and 5L) and EORTC- QLQ- C30 mapped to EQ- 5D (3L and 5L) Tariff: UK tariff (86, 93)	Patients with NSCLC, ran- dom effects model, EORTC-QLQ- C30 to EQ- SD-5L (pre- dicted)	0.577 (0.241)	Conclusions: mapping algorithms developed from EQ-5D-5L appear to provide improved estimates of utilities compared with EQ-5D- 3L in patients with NSCLC, particularly at poorer health states. Limitations: • Small sample size and relatively few health states • Inferences should be limited to a similar NSCLC population until further evi- dence emerges of wider applicability across tumour types • External validity was not possible in an in- dependent data set • Insufficient numbers of events were avail- able for reliable computation of QALYs
			Patients with NSCLC, ran- dom effects model, EQ- 5D-5L (ob- served)	0.572 (0.224)	
			Patients with NSCLC, beta binomial model, EORTC-QLQ- C30 to EQ- SD-5L (pre- dicted)	0.575 (0.211)	
			Patients with NSCLC, beta binomial model, EQ- 5D-5L (ob- served)	0.572 (0.224)	
			Patients with NSCLC, LVDM model, EORTC-QLQ- C30 to EQ-	0.569 (0.217)	

			5D-5L (pre- dicted)		• The values of the EQ-5D-5L were
			Patients with NSCLC, LVDM model, EQ-5D-5L (observed)	0.572 (0.224)	cross-walked from the EQ-5D-3L and are therefore subject to uncertainty
			Patients with NSCLC, ran- dom effects model, EORTC-QLQ- C30 to EQ- 5D-3L (pre- dicted)	0.523 (0.252)	
			Patients with NSCLC, ran- dom effects model, EQ- 5D-3L (ob- served)	0.515 (0.308)	
			Patients with NSCLC, beta binomial model, EORTC-QLQ- C30 to EQ- 5D-3L (pre- dicted)	0.518 (0.183)	
			Patients with NSCLC, beta binomial model, EQ- 5D-3L (ob- served)	0.515 (0.308)	
			Patients with NSCLC, LVDM model, EORTC-QLQ- C30 to EQ- 5D-3L (pre- dicted)	0.532 (0.252)	
			Patients with NSCLC, LVDM model, EQ-5D-3L (observed)	0.515 (0.308)	
Kim, 2018 (94) South Ko- rea	Adults (aged ≥19 years) from the Ko- rean general population on	Instru- ment: SG and VAS	Stage 1 lung cancer, val- ued by proxy respondents from the Ko- rean general	0.48 (0.17)	Conclusions: findings indicate that a range of descriptions of lung cancer states can be feasibly evaluated in

	behalf of pa- tients with Stage 1-4 lung cancer (n=515)	Tariff: NA	public, VAS, baseline		the South Korean pop- ulation using either the
			Stage 1 lung cancer, val- ued by proxy respondents from the Ko- rean general public, SG, baseline	0.66 (0.27)	VAS or SG methods. Limitations: • The number of sce- narios was intention- ally reduced to mini- mise the cognitive burden on partici-
			Stage 2 lung cancer, val- ued by proxy respondents from the Ko- rean general public, VAS, baseline	0.38 (0.17)	 pants Response integrity data were not col- lected and it is therefore not possi- ble to analyse char- acteristics relating to non-response
			Stage 2 lung cancer, val- ued by proxy respondents from the Ko- rean general public, SG, baseline	0.56 (0.28)	
			Stage 3A lung cancer, val- ued by proxy respondents from the Ko- rean general public, VAS, baseline	0.27 (0.17)	
			Stage 3A lung cancer, val- ued by proxy respondents from the Ko- rean general public, SG, baseline	0.45 (0.29)	
			Stage 3B lung cancer, val- ued by proxy respondents from the Ko- rean general public, VAS, baseline	0.20 (0.18)	
			Stage 3B lung cancer, val- ued by proxy respondents	0.38 (0.29)	

			from the Ko- rean general public, SG, baseline Stage 4 lung cancer, val- ued by proxy respondents from the Ko- rean general public, VAS, baseline	0.09 (0.18)	
			Stage 4 lung cancer, val- ued by proxy respondents from the Ko- rean general public, SG, baseline	0.31 (0.30)	
			Pulmonary nodule, val- ued by proxy respondents from the Ko- rean general public, VAS, baseline	0.66 (0.21)	
			Pulmonary nodule, val- ued by proxy respondents from the Ko- rean general public, SG, baseline	0.83 (0.24)	
Koide, 2019 (95) Japan	Patients with Stage 1–3 NSCLC, who underwent VATS (n=24)	Instru- ment: EQ-5D- 5L Tariff:	Patients with Stage 1–3 NSCLC, pre- operative (baseline)	0.81 (0.19)	Conclusions: QoL sur- vey for NSCLC patients using EQ-5D-5L was simple and useful in identifying the issue
	Japa- nese ta- riff	Japa- nese ta- riff	Patients with Stage 1–3 NSCLC, post- operative	0.74 (0.11)	faced by the medical team; it also could pre- dict operation time and bleeding under specific circumstances. Limitations: • None reported
Manser, 2006 (96) Australia	Patients with lung cancer (any stage) re- cruited from a	Instru- ment: AQoL	Patients with Stage 1 NSCLC, base- line (n=29)	0.62 [0.43- 0.87] [‡]	Conclusions: data from this study supported the validity of the

	tertiary multi- disciplinary lung cancer clinic (n=92)	tiary multi- Tariff: ciplinary NR g cancer iic (n=92)	Patients with Stage 2 NSCLC, base- line (n=15)	0.60 [0.24- 0.80] [‡]	AQoL for use in pa- tients with lung cancer; however, there re- mains some uncer-	
			Patients with Stage 3 NSCLC, base- line (n=22)	0.67 [0.52- 0.87] [‡]	tainty about whether the AQoL has sufficient content validity and sensitivity to different	
			Patients with Stage 4 NSCLC, base- line (n=23)	0.68 [0.54- 0.82] [‡]	health states for use in patients with lung can- cer.	
				Patients with lung cancer, inoperable (n=42), base- line	0.66 [0.52- 0.82] [‡]	 Limitations: Potential selection bias and relatively small sample size Loss to follow up in
			Patients with lung cancer, operable (n=49), base- line	0.67 [0.35- 0.87] [‡]	 the inoperable group at 3 and 6 months Disease-specific HRQoL question- naire was not uti- 	
			Patients with lung cancer, all patients (n=66), 3 months' fol- low up	0.57 [0.49, 0.64] [‡]	lised	
			Patients with lung cancer, operable (n=44), 3 months' fol- low up	0.55 [0.45, 0.64] [‡]		
				Patients with lung cancer, inoperable (n=22), 3 months' fol- low up	0.60 [0.49, 0.72] [‡]	
			Patients with lung cancer, all patients (n=59), 6 months' fol- low up	0.59 [0.52, 0.66] [‡]		
			Patients with lung cancer, operable (n=43), 6 months' fol- low up	0.59 [0.50, 0.68] [‡]		

			Patients with lung cancer, inoperable (n=16), 6 months' fol- low up	0.60 [0.50, 0.70]‡	
			Patients with Stage 1 NSCLC, surgi- cal group, 6 months' fol- low up (n=22)	0.67 [0.54, 0.79]‡	
			Patients with Stage 2–3 NSCLC, surgi- cal group, 6 months' fol- low up (n=20)	0.55 [0.40, 0.69]‡	
			Patients with Stage 1–3 (non-surgical) and Stage 4 NSCLC, 6 months' fol- low up (n=18)	0.56 [0.46, 0.67]‡	
Naik, 2017 (97) Canada	Adult ambula- tory cancer survivors, in- cluding lung	Adult ambula- tory cancer ment: survivors, in- cluding lung 3L cancer Tariff: (n=1,759) UK, US, and Ca- nadian tariffs	Patients with lung cancer (n=149), Ca- nadian tariff	0.78 (SE 0.02)	Conclusions: this work represents the first set of health utility scores for numerous cancer sites derived using Ca- nadian preference weights; the dataset demonstrated con- struct validity and health utility scores varied by general so- cio-demographic and clinical parameters. Limitations: • Not possible to ad- just for some clinical variables in rogras
	cancer (n=1,759)		Patients with lung cancer (n=149), US tariff	0.80 (SE 0.01)	
			Patients with lung cancer (n=149), UK tariff	0.73 (SE 0.02)	
			Patients with local/regional lung cancer (n=89), Cana- dian tariff	0.78 (SE 0.02)	
		Patients with distant/met- astatic lung cancer (n=60), Cana- dian tariff	0.77 (SE 0.03)	 sion analysis Estimates presented may not necessarily be representative of cancer survivors in the Canadian com- munity at large 	
					 Individuals were re- cruited based on a convenience sam- pling approach

Rauma, 2019 (98) Finland	Patients with localised NSCLC who un- derwent lobec-	Patients with localisedInstru- ment:NSCLC who un- derwent lobec-15DTariff:	Patients with local NSCLC, total 15D score, VATS	0.809	Conclusion: this study reported the surprising result that patients with NSCLC undergoing					
	tomy at a sin- gle institution between Janu- ary 2006 and January 2013 (n=180)	NR	Patients with local NSCLC, total 15D score, thora- cotomy	0.851	VATS had worse long- term HRQoL scores in several critical dimen- sions, including breath- ing and overall 15D					
	(11-100)		Patients with local NSCLC, 15D breath- ing dimen- sion, VATS	0.637	score. Limitations: • Retrospective study design and lack of					
			Patients with local NSCLC, 15D breath- ing dimen- sion, thora- cotomy	0.719	baseline HRQoL data precluded identifica- tion of actual changes in HRQoL as a consequence of the selected surgical					
		Patients with local NSCLC, 15D speaking dimension, VATS	0.942	 The 2-part collection of data may predis- pose the results to some temporal bias 						
		Patients with local NSCLC, 15D speaking dimension, thoracotomy	0.973							
			Patients with local NSCLC, 15D usual ac- tivities di- mension, VATS	0.746						
		Patients with local NSCLC, 15D usual ac- tivities di- mension, thoracotomy	0.821							
			Patients with local NSCLC, 15D mental function di- mension, VATS	0.818						
									Patients with local NSCLC, 15D mental	0.917

			function di- mension, thoracotomy		
			Patients with local NSCLC, 15D vitality dimension, VATS	0.767	
			Patients with local NSCLC, 15D vitality dimension, thoracotomy	0.824	
Sharples, Patients with 2012 (99) known/sus- UK pected NSCLC, pending result of surgical	Patients with known/sus- pected NSCLC, pending results of surgical	Instru- ment: EQ-5D- 3L Tariff:	Patients with NSCLC, base- line (Day 0), EUS/EBUS (n=73)	0.81 (0.18)	Conclusions: taking the clinical, QoL, and health resource data together, evidence from this study sug-
	staging and po- tentially suita- ble for surgical resection, with no evidence of distant meta-	UK tariff (as- sumed from refer- ence to	Patients with NSCLC, base- line (Day 0), surgical stag- ing (n=71)	0.83 (0.14)	gested that lung cancer staging could com- mence with a com- bined EUS/EBUS exam- ination, followed by
(n=144)	static disease (n=144)	Dolan et al [1997] (86))	Patients with NSCLC, end of staging (Day 7), EUS/EBUS (n=73)	0.78 (0.23)	surgical staging if these tests were negative. Limitations: • Limited number of
		Patients with NSCLC, end of staging (Day 7), sur- gical staging (n=71)	0.67 (0.29)	 The EQ-5D is a generic measure that is unlikely to illustrate changes in QoL that are specific to the disease course 	
		Patients with NSCLC, 2 months' fol- low up (Day 61), EUS/EBUS (n=73)	0.64 (0.27)		
			Patients with NSCLC, 2 months' fol- low up (Day 61), surgical staging (n=71)	0.65 (0.26)	
			Patients with NSCLC, 6 months' fol- low up (Day 183),	0.68 (0.30)	

			EUS/EBUS (n=73)		
			Patients with NSCLC, 6 months' fol- low up (Day 183), surgical staging (n=71)	0.67 (0.31)	
Swan, 2018 (100) US	Patients with early- (1–2) or late- (3–4) stage NSCLC	Instru- ment: SG, MAUT- based index, and FACT-U§ Tariff: NA	Patients with early (Stage 1–2) NSCLC, SG, baseline	0.82 (0.16)	Conclusions: FACT-U shows early evidence of validity for inform- ing economic analysis
	(n=236)		Patients with early (Stage 1–2) NSCLC, MAUT-based index, base- line	0.69 (0.21)	of lung cancer treat- ments. Limitations: Minorities were lim- ited in the study
			Patients with early (Stage 1–2) NSCLC, FACT-U, baseline	0.83 (0.14)	sample
			Patients with advanced (Stage 3–4) NSCLC, SG, baseline	0.82 (0.13)	
			Patients with advanced (Stage 3–4) NSCLC, MAUT-based index, base- line	0.60 (0.2)	
			Patients with advanced (Stage 3–4) NSCLC, FACT- U, baseline	0.78 (0.14)	
Tramon- tano, 2015 (101) 0 US (supple- mented by data reported	Patients with newly diag- nosed lung cancer (Stage 1–4) (n=2,396)	Instru- ment: EQ-5D- 3L and SF-6D Tariff: NR	Patients with lung cancer, all stages, EQ-5D-3L (n=2,396)	0.78 (0.18) [0.77, 0.79]	Conclusions: this study generated a catalogue of community- weighted utilities appli- cable to societal per-
			Patients with lung cancer, all stages, SF- 6D (n=2,344)	0.68 (0.14) [NR]	spective cost-effective- ness analyses of lung cancer interventions and compared utilities
et al			Patients with Stage 1–2 lung cancer,	0.80 (NR) [0.79, 0.81]	based on the EQ-5D and SF-6D.

[2020] (83))				EQ-5D-3L (n=982)		Limitations: None reported
			Patients with Stage 3–4 lung cancer, EQ-5D-3L (n=1,277)	0.77 (NR) [0.76, 0.78]		
Trippoli, 2001 (102)	Patients with a diagnosis of NSCLC (n=92)	Instru- ment: EQ-5D-	Patients with NSCLC (all n=92)	0.58 (0.33)	Conclusions: the EQ- 5D-3L measurements obtained from these	
Italy		3L Tariff: NR	Patients with NSCLC, male (n=85)	0.58 (0.34)	patients will aid evalu- ation of the cost-utility ratio for NSCLC thera-	
			Patients with NSCLC, fe- male (n=7)	0.67 (0.16)	pies. Limitations:	
			Patients with NSCLC, treat- ment with surgery (n=26)	0.56 (0.27)	 No detailed data about therapeutic in- terventions and staging were col- lected during the study 	
			Patients with NSCLC, no treatment with surgery (n=65)	0.59 (0.35)	 No disease-specific questionnaires (e.g. EORTC-QLQ-C30, FACT-L, or the LCSS) were employed 	
			Patients with NSCLC, treat- ment with chemother- apy (n=79)	0.59 (0.32)		
			Patients with NSCLC, no treatment with chemo- therapy (n=13)	0.57 (0.39)		
		Patients with NSCLC, treat- ment with ra- diotherapy (n=21)	0.53 (0.30)			
		Patients with NSCLC, no treatment with radio- therapy (n=70)	0.60 (0.34)			
			Patients with NSCLC, me- tastasis pre- sent (n=59)	0.53 (0.36)		

			Patients with NSCLC, me- tastasis ab- sent (n=32)	0.68 (0.24)	
			Patients with NSCLC, age <65 years' old (n=46)	0.64 (0.31)	
			Patients with NSCLC, age >65 years' old (n=46)	0.54 (0.34)	
		Patients with NSCLC, time since diagno- sis <12 months (n=67)	0.61 (0.34)		
			Patients with NSCLC, time since diagno- sis >12 months (n=21)	0.50 (0.30)	
Vogel, 2019 (103) US	Patients with Stage 1–3 NSCLC receiv- ing definitive chemo-radia- tion (n=43)	Instru- ment: EQ-5D (version not speci- fied)	Patients with Stage 1–3 NSCLC, pre radiation	0.86	Conclusions: CCI was associated with multi- ple HRQoL outcomes in patients with locally advanced (Stage 1–3) NSCLC treated with de-
		Tariff: NR	Patients with Stage 1–3 NSCLC, post- radiation	0.83	 tion. Limitations: Relatively small sample size and highly-selected patient population Confounding factors that may not have been adjusted for in analyses, including education level, income, and physical activity

Witlox, Patients with 2020 Stage 3 NSCLC (104) (n=174) Nether- Iands	Instru- ment: EQ-5D- 3L Tariff: Dutch tariff	Patients with Stage 3 NSCLC, prophylactic cranial irradi- ation arm, baseline	0.80	Conclusions: a statisti- cally significant or clini- cally relevant impact of prophylactic cranial ir- radiation on HRQoL was not observed in this study in patients with Stage 3 NSCLC.	
			Patients with Stage 3 NSCLC, ob- servation arm, baseline	0.79	 Patients who developed symptomatic brain metastases may have dropped out of the analysis and thus HRQoL might be potentially overestimated overall The NVALT-11/DLCRG-02 trial was not powered to detect a statistically significant difference between the study arms, as HRQoL was a secondary endpoint
Wolff, 2018 (105) Nether- lands	Patients with Instru- stage I NSCLC ment: treated with ei- trested with ei- surgery C30 (N=302) mappe to EQ- 5D-3L (pub- lished algo- rithm b Long- worth al [2014] (106)) Tariff: UK tari (as- sumed from refer- ence to Dolan c al [1997] (86))	Instru- ment: EORTC- QLQ- C30 mapped to EQ- 5D-3L	Patients with stage I NSCLC, treat- ment differ- ence at base- line, SBRT versus sur- gery	0.071 [0.017, 0.128]	Conclusions: this study shows that there is no clinically meaningful difference in health utility between pa- tients with surgically treated early-stage NSCLC and patients
		lished algo- rithm by Long- worth et al [2014] (106)) Tariff: UK tariff (as- sumed from refer- ence to Dolan et al [1997] (86))	Patients with stage I NSCLC, mean 1-year treat- ment differ- ence, SBRT versus sur- gery	0.026 [-0.028, 0.080]	treated with SBRT. Limitations: • It was not possible to study the impact of treatment toxici- ties on health utility • Fourteen patients were censored at the start of adjuvant treatment or when a recurrence was de- tected

Yang, 2014 (107) Taiwan	Patients with NSCLC and free from other ma- lignancies dur- ing the period from January 2005 to De- cember 2011 (N=518)	Patients with NSCLC and free from other ma- lignancies dur- ing the period from January 2005 to De- cember 2011 (N=518)Instru- ment: SQL Taiwa- nese ta- riffPatients with stage I NSCLC, per- formance status 0–1, operable (N=275)Patients with stage II NSCLC, per- formance status 0–1, operable (N=275)Patients with stage II NSCLC, per- formance status 0–1, operable (N=275)Patients with stage III NSCLC, per- 	0.86 (0.17)	Conclusions: the utility gained from surgical operation for operable lung cancer is substan- tial, even after adjust- ment for lead-time bias.	
			Patients with stage II NSCLC, per- formance status 0–1, operable (N=275)	0.83 (0.17)	Limitations: • QoL and survival of patients might be af- fected by major chronic diseases
			Patients with stage III NSCLC, per- formance status 0–1, operable (N=275)	0.83 (0.17)	 QoL measurements from some individu- als were performed repeatedly The estimation of QALE would have been more accurate if the QoL of every patient in the cohort repeatedly during the follow-up period
			Patients with stage III NSCLC, per- formance status 0–1, inoperable (N=243)	0.73 (0.25)	
			Patients with stage I NSCLC, per- formance status 0–4, operable (N=281)	0.85 (0.17)	
			Patients with stage II NSCLC, per- formance status 0–4, operable (N=281)	0.83 (0.17)	
			Patients with stage III NSCLC, per- formance status 0–4, operable (N=281)	0.83 (0.16)	
			Patients with stage III NSCLC, per- formance status 0–4,	0.72 (0.25)	

		inoperable (N=250)		
		Patients with operable NSCLC, per- formance status 0–1 (N=275), male, age ≤54 years	0.86 (0.15)	
		Patients with operable NSCLC, per- formance status 0–1 (N=275), male, age 55–74 years	0.86 (0.16)	
		Patients with operable NSCLC, per- formance status 0–1 (N=275), male, age ≥75 years	0.77 (0.19)	
		Patients with operable NSCLC, per- formance status 0−1 (N=275), fe- male, age ≤54 years	0.86 (0.16)	
		Patients with operable NSCLC, per- formance status 0–1 (N=275), fe- male, age 55–74 years	0.82 (0.17)	
		Patients with operable NSCLC, per- formance status 0–1 (N=275), fe- male, age ≥75 years	0.72 (0.23)	
		Patients with operable NSCLC, per- formance status 0-4	0.86 (0.15)	

			(N=281), male, age ≤54 years		
			Patients with operable NSCLC, per- formance status 0–4 (N=281), male, age 55–74 years	0.86 (0.16)	
		Patients with operable NSCLC, per- formance status 0–4 (N=281), male, age ≥75 years	0.77 (0.19)		
			Patients with operable NSCLC, per- formance status 0–4 (N=281), fe- male, age ≤54 years	0.86 (0.16)	
		Patients with operable NSCLC, per- formance status 0–4 (N=281), fe- male, age 55–74 years	0.82 (0.17)		
		Patients with operable NSCLC, per- formance status 0–4 (N=281), fe- male, age ≥75 years	0.72 (0.23)		
Yang, Patients with In 2019 lung cancer m (108) (any stage) vis- iting the au- thor's hospital (N=1,715) Ta	Patients with lung cancer (any stage) vis- iting the au- thor's hospital (N=1,715)	Instru- ment: EQ-5D- 3L Tariff:	Patients with stage I–IIIA squamous NSCLC, age <65 years (N=46)	0.88 (SE 0.02)	Conclusions: this 7- year real-world survey provided detailed EQ- 5D estimates of health utility, which could be
	nese ta- riff	Patients with stage I–IIIA non-squa- mous NSCLC, age <65 years (N=350)	0.90 (SE 0.01)	fectiveness analysis for treatments of lung can- cer; compared with pa- tients undergoing sec-	

			Patients with stage I–IIIA squamous NSCLC, age ≥65 years (N=68)	0.85 (SE 0.02)	ond-line chemother- apy, those receiving targeted therapy had higher utility values. Limitations:
			Patients with stage I–IIIA non-squa- mous NSCLC, age ≥65 years (N=260)	0.86 (SE 0.01)	 Detailed AEs were not included in each measurement, which may have a consider- able impact on QoL,
			Patients with stage IIIB–IV squamous NSCLC, age <65 years (N=46)	0.84 (SE 0.03)	 Most participants were from outpa- tient departments, and thus the utility
			Patients with stage IIIB–IV non-squa- mous NSCLC, age <65 years (N=476)	0.85 (SE 0.01)	values were likely to be overestimated • QoL measurements were not performed in a predefined pe- riod
		Patients with stage IIIB–IV squamous NSCLC, age ≥65 years (N=66)	0.73 (SE 0.03)		
		Patients with stage IIIB–IV non-squa- mous NSCLC, age ≥65 years (N=321)	0.81 (SE 0.01)		
June 2022 (update (N=2)				
Mahal, 2021 (109) US	Patients who were treated for a primary stage I–III tumour (prostate,	Instru- ment: SF-6D Tariff: NA	Early era lung cancer patients (treated 1998– 2003); baseline (N=67)	0.72 (0.14)	Conclusions: Older pa- tients treated for pros- tate, breast, or lung can- cer in the 'Late Era' re- ported similar outcomes
breast, lung) with valid dates of diagnosis and death and who did not have a second cancer diagnosed be- fore their follow- up survey (N=67 [patients with	breast, lung) with valid dates of diagnosis and death and who did not have a second cancer diagnosed be- fore their follow-	(study used an al- go- rithm to cal- culate utili-	Early era lung cancer patients (treated 1998– 2003); change from baseline at follow-up (N=62)	-0.07 (0.14)	of changes in HRQoL compared with 'Early Era' patients. That is, as advancements in cancer care have become more successful (and poten- tially more intense) the
	utili- ties from SF-12	Late era lung cancer patients (treated 2006–	0.74 (0.14)	QoL of patients under- going contemporary	

lung cancer only])	and SF-36)	2011); baseline (N=67)		therapy has not been impacted. This finding perhaps highlights sig-
		Late era lung cancer patients (treated 2006– 2011); change from baseline at follow-up (N=62)	-0.07 (0.12)	 perhaps highlights significant improvements in supportive care services. Limitations: The study analysed only patients who were enrolled in the Medicare Advantage plan and thus part of the Medicare Health Outcomes Survey. It is possible that Medi- care Advantage enrol- ees are healthier than fee-for-service benefi- ciaries, though others have shown equiva- lence The researchers were unable to assess the specific treatments re- ceived by patients. The SEER-MHOS com- bined database does not include claims; therefore, only the SEER treatment varia- bles were available, which are general Due to limitations of the dataset, it was not possible to assess HRQoL/utilities more than 2 years after can- cer treatment, and it is possible that trends in health utility changes after 2 years differ from those within 2 years The study was limited by the small sample size of patients who had completed a sur- vey both pre-cancer diagnosis and post
				cancer treatment

					 A calliper was not used in the propensity score matching algo- rithm There is potential for residual confounding. Many standardised mean differences pre- sented in this study were large due to the sample size. Regres- sion adjustment to mitigate residual im- balance was not con- ducted
Sigel, Patients with 2022 stage I NSCLC (110) with major US comorbid illn (N=15,537)	Patients with stage I NSCLC with major comorbid illness (N=15,537)	Instru- ment: SF-6D Tariff: NA (study	Mean utility from SEER- MHOS data for stage I NSCLC patients (N=1,292)	0.77	Conclusions: Simulation modelling approaches were used to estimate the QALE gains associ- ated with different treat- ment approaches for
		used an al- go- rithm to cal- culate utili- ties from SF-12 and SF-36)	Annual utility decline for par- ticipants at risk of stage I lung cancer (N=NR)	0.017	stage I NSCLC patients according to age, sex, tu- mour size and histologic subtype, and comorbid- ity profile. It was found that more aggressive sur- gical approaches were associated with the greatest projected life year gains in most sce- narios, although older patients and those with greater comorbid burden often benefited equally from less aggressive strategies. These results may be useful for guiding future comparative re- search. Limitations:
					• Limitations in the available randomised data for comparison of the treatment modali- ties are included in this analysis. Direct ex- perimental compari- son data for seg- mentectomy, wedge

resection, and SBRT are even more limited

- The ascertainment of comorbidity status from the cancer cohorts relied on diagnostic codes, which may have limited accuracy and could not be used to assess disease severity
- The model does not reflect changes in lung cancer survival associated with sociodemographic or geographic regional differences, although US population-based data was used for much of the parameterisation
- Accepted clinically meaningful differences in survival have not been well established for stage I lung cancer treatments

July 2023 update (N=1)

Jin, 2023	Adu
(111)	wit
China	tum fied
	can
	min
	civo

Instru-It patients h pulmonary ment: nours identi-EQ-5Das being 3L didates for Tariff: imally inva-Unsive lobectomy clear (resectable NSCLC) (N=320)

Patients with 0.002 resected [-] NSCLC, mean 0.008, difference at 4 0.012] weeks Patients with 0.003 resected [-NSCLC, mean 0.004, difference at 0.010] 24 weeks Patients with 0.004 resected [-

NSCLC, mean

difference at

48 weeks

Conclusions: Both surgical modalities showed satisfactory and comparable HRQoL and postoperative pain up to 48 weeks after surgery, despite some minor statistical differences at Week 4.

Limitations:

0.002,

0.011]

- The single centre nature of the clinical trial makes it less persuasive than a multicentre study
- No blinding to treatment assignment was incorporated into the trial, the research findings may be influ-

					 enced by the subjective feelings of the patients Some patients were lost to follow up at each time point, contributing to approximately 90% survey rate at Week 48
September	2023 update (N=1)				
Patel, 2023 (112) Multi- national	Patients age >18 years with clini- cal stage I, II, or IIIa NSCLC and candidate for minimally inva- sive pulmonary lobectomy, as determined by the operating surgeon (N=164)	Instru- ment: EQ-5D- SL Tariff: Cana- dian tariff	Patients un- dergoing VATS for stage I–IIIa NSCLC; base- line (N=77)	0.82 (0.18)	Conclusions: Early re- sults of the RAVAL trial suggest that RPL-4 is a cost-effective interven- tion which is associated with comparable pa- tient-reported HU scores when compared with VATS-Lobectomy. Limitations: • HU and the resulting ICER, were measured at a short time hori- zon of 12-months. Longer term follow- up, and future data on mortality may influ- ence these results in either direction
			Patients under- going RTS for stage I–IIIa NSCLC; base- line (N=80)	0.84 (0.10)	
			Patients under- going VATS for stage I–IIIa NSCLC; 3- weeks post- surgery (N=76)	0.74 (0.19)	
			Patients under- going RTS for stage I–IIIa NSCLC; 3- weeks post- surgery (N=79)	0.78 (0.17)	
			Patients under- going VATS for stage I–IIIa NSCLC; 7- weeks post- surgery (N=71)	0.78 (0.18)	
			Patients under- going RTS for stage I–IIIa NSCLC; 7- weeks post- surgery (N=75)	0.84 (0.14)	
			Patients under- going VATS for stage I–IIIa NSCLC; 12- weeks post- surgery (N=73)	0.80 (0.19)	

Patients under going RTS for stage I–IIIa NSCLC; 12- weeks post- surgery (N=75)	- 0.85 (0.10)
Patients under going VATS for stage I–IIIa NSCLC; 6- months post- surgery (N=8)	- 0.71 (0.20)
Patients under going RTS for stage I–IIIa NSCLC; 6- months post- surgery (N=9)	- 0.85 (0.12)
Patients under going VATS for stage I–IIIa NSCLC; 12- months post- surgery (N=77)	- 0.79 (0.22)
Patients under going RTS for stage I–IIIa NSCLC; 12- months post- surgery (N=72)	- 0.84 (0.11)

Abbreviations: 15D, 15 Dimensions; AE, adverse event; AQoL, Assessment of Quality of Life; CCI, Charlson Comorbidity Index; CI, confidence interval; CGA, comprehensive geriatric assessment; EBUS, endobronchial ultrasound; EORTC-QLQ-C30, European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire; EQ-5D (3L/5L), European Quality of Life-5 Dimensions (3 Level/5 Level version); EUS, endoscopic ultrasound; FACT-L, Functional Assessment of Cancer Therapy – Lung; FACT-U, Functional Assessment of Cancer Therapy - Lung Utility Index; HRQoL, health-related quality of life; HSUV, health state utility value; HU, health utility; IQR, interquartile range; LCSS, Lung Cancer Symptom Scale; LVDM, Limited Variable Dependent Mixture; MAUT, multi-attribute utility theory; NA, not applicable; NR, not reported; NSCLC, non-small cell lung cancer; QALE, quality-adjusted life expectancy; QALY, quality-adjusted life year; QoL, quality of life; RTS, robotic-assisted thoracoscopic surgery; SBRT, stereotactic body radiation therapy; SD, standard deviation; SE, standard error; SF-6D, Short Form-6 Dimensions; SG, standard gamble; TTO, time trade off; VATS, video-assisted thoracoscopic surgery; VAS, visual analogue scale. + Individuals contributing to pooled value for all stages: Stage I-II: N=1,510; Stage III-IV: N=4,703.

‡ Median [IQR].

§ The FACT-U was constructed with two methods: (i) MAUT, where a VAS-based index was transformed to SG; and (ii) an unweighted index, where items were summed, normalised to a 0 to 1.0 scale, and the result transformed to a scale length equivalent to the VAS or SG MAUT-based model on a Dead to Full Health scale.

GREEN: health states relevant to patients with stage II/III(A) disease; ORANGE: uncertainty in the method used to derive utilities (instrument and/or social tariff unclear); RED: intervention-specific health state where surgery +/- adjuvant chemotherapy is not used (e.g., relates to radiotherapy use); BLUE: both GREEN and RED criteria apply.

In summary, the current SLR provides a comprehensive repository of the currently available published utility and HRQoL data relevant to patients with early-stage NSCLC. The evidence identified suggests that early NSCLC has a substantial impact on HRQoL that is influenced by numerous factors, including geographical location, disease stage, and treatment approach. Further studies using prospective study designs and larger patient cohorts are required to confirm these findings. The requirements of HTA body reference cases should also be taken into consideration when designing future trials, in order to generate robust HSUVs that would be considered appropriate for informing reimbursement decisions. In any case, the choice of utility inputs for future economic evaluations

should be fully justified, and estimates should be thoroughly tested through comprehensive sensitivity analysis.

I.1.2 Quality assessment and generalizability of estimates

During data extraction, the relevance of utilities and the quality of the studies generated were assessed and recorded, and the quality of any mapping algorithms examined. This process was recommended by NICE, in technical support documents (TSDs) 8-10 and enables justification of the use/non-use of different utility values or mapping algorithms in an economic model. In particular, the following issues were addressed:

- Whether response rates, loss to follow up, or missing data level were likely to threaten the validity of the utility estimate
- Whether the selection criteria yielded a population similar to that being modelled
- Whether utility incorporated decrement for quality-of-life loss from AEs
- Whether the utility met the NICE reference case (i.e. health states should be described by the patient and valued according to societal preferences using UK/English societal preferences) (113)

I.1.3 Unpublished data

[The quality of any unpublished data must be specifically addressed and a publication plan for unpublished data must be submitted.]

Appendix J. Literature searches to the health economic model

J.1 External literature for input to the health economic model

Structured searches were run in the Medical Literature Analysis and Retrieval System (MEDLINE®), Excerpta Medica dataBASE (Embase®), Cochrane databases, and MEDLINE Inprocess via PubMed to identify literature published from 2008 to 14th September 2023 (i.e., the last 15 years). These were supplemented by grey literature searches and back-referencing of relevant review articles, and searches for relevant congress abstracts from the last 3 years (2021-September 2023). Additionally, trial registry searches were conducted to retrieve ongoing and planned trials.

J.1.1 Systematic search for Clinical Evidence on Interventions used for Locally Advanced or Metastatic NSCLC in a Population with ALK Positive Disease

The objective was to conduct a systematic literature review (SLR) of clinical evidence (efficacy and safety) associated with interventions in the treatment of locally advanced or metastatic anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC).

Database	Platform/source	Relevant period for the search	Date of search comple- tion
Embase	Via Embase.com	2008 to September 2023 (the last 15 years)	15 th September 2023
Medline	Via Embase.com	2008 to September 2023 (the last 15 years)	15 th September 2023
Cochrane Database of Systematic Reviews (CDSR)	Cochrane Libary	2008 to September 2023 (the last 15 years)	15 th September 2023
Cochrane Central Reg- ister of Con- trolled Tri- als (CEN- TRAL)	Cochrane Libary	2008 to September 2023 (the last 15 years)	15 th September 2023

Table 51 Sources included in the search

Supplementary searches

In addition to the structured search, the following supplementary searches were also conducted to identify relevant literature. The keywords used for conducting supplementary searches were as follows:

NSCLC terms: "non small cell lung cancer", "bronchial non small cell cancer", "bronchial non small cell carcinoma", "lung non small cell cancer", "lung non small cell carcinoma", "non small cell bronchial cancer", "non small cell lung carcinoma", "non small cell pulmonary cancer", "non small cell pulmonary carcinoma", "pulmonary non small cell cancer", "pulmonary non small cell carcinoma", "nsclc", "lung adenocarcinoma", "squamous cell lung carcinoma"

Disease stage search terms: "anaplastic lymphoma kinase", "alk+", "alk-positive", "anaplastic lymphoma kinase inhibitor", "alk inhibitor"

Study design terms: "clinical trial", "randomization", "controlled study", "comparative study", "single blind procedure", "double blind procedure", "crossover procedure", "placebo", "controlled clinical trial", "randomised controlled trial", "randomization", "randomization", "randomi", "rct", "random allocation", "randomly allocated", "allocated randomly", "placebo", "prospective study"

Conference searches

To retrieve the latest data for completed and ongoing trials, hand-searching of the following relevant conference proceedings/databases in the last 3 years (2021–2023) was conducted:

- American Society of Clinical Oncology (ASCO) Annual Meeting
- European Society for Medical Oncology (ESMO) Congress
- American Society of Hematology (ASH)
- American Association for Cancer Research (AACR)
- World Conference on Lung Cancer (WCLC)
- ESMO Immuno-Oncology Congress
- European Lung Cancer Congress (ELCC)

The conference search was conducted between August and September 2023. **Trial registry searches**

To retrieve relevant information from ongoing and planned clinical trials, keyword-based searches in the following trial registries were conducted between the 26th and 27th of October 2023:

- Clinicaltrials.gov (www.clinicaltrials.gov)
- EU Clinical Trials Register (EU-CTR, www.clinicaltrialsregister.eu)
- International Clinical Trials Registry Platform Search Portal (ICTRP Search Portal, WHO search portal: http://apps.who.int/trialsearch/).

J.1.2 Example: Targeted literature search for [estimates]

In addition to the structured search, the following supplementary searches were also conducted to identify relevant literature. The keywords used for conducting supplementary searches were as follows.

Source name/ database	Location/source	Search strategy	Date of search
American Soci- ety of Clinical Oncology (ASCO)		Hand searched	Between august and september 2023
European Soci- ety for Medical Oncology (ESMO)		Hand searched	Between august and september 2023
American Soci- ety of Hematol- ogy		Hand searched	Between august and september 2023
American Asso- ciation for Can- cer Research		Hand searched	Between august and september 2023
World Confer- ence on Lung Cancer		Hand searched	Between august and september 2023
ESMO Immuno- Oncology		Hand searched	Between august and september 2023
European Lung Cancer Con- gress		Hand searched	Between august and september 2023
Clinicaltri- als.gov	www.clinicaltrials.gov	Hand searched	26th and 27th of Octo- ber 2023:
EU Clinical Tri- als Register	ww.clinicaltrialsregis- ter.eu	Hand searched	26th and 27th of Octo- ber 2023:
International Clinical Trials Registry Plat- form Search Portal	ICTRP Search Portal	Hand searched	26th and 27th of Octo- ber 2023:
WHO search portal:	http://apps.who.int/tri- alsearch/	Hand searched	26th and 27th of Octo- ber 2023:

In the manual search the following searches has been used:

NSCLC terms: "non small cell lung cancer", "bronchial non small cell cancer", "bronchial non small cell carcinoma", "lung non small cell cancer", "lung non small cell carcinoma", "non small cell bronchial cancer", "non small cell lung carcinoma", "non small cell pulmonary cancer", "non small cell pulmonary carcinoma", "pulmonary non small cell cancer", "pulmonary non small cell carcinoma", "nsclc", "lung adenocarcinoma", "squamous cell lung carcinoma"

Disease stage search terms: "anaplastic lymphoma kinase", "alk+", "alk-positive", "anaplastic lymphoma kinase inhibitor", "alk inhibitor"

Study design terms: "clinical trial", "randomization", "controlled study", "comparative study", "single blind procedure", "double blind procedure", "crossover procedure", "placebo", "controlled clinical trial", "randomised controlled trial", "randomization", "randomization", "randomi", "rct", "random allocation", "randomly allocated", "allocated randomly", "placebo", "prospective study"

Eligibility criteria

To be included in this review, publications had to meet the predefined eligibility (inclusion/exclusion) criteria based on the PICOS framework and provide relevant data to address the research questions of interest, as shown below

Description	Inclusion criteria	Exclusion criteria
Population	 Indication: NSCLC Stage: Locally ad- vanced or metastatic (Stage IIIB or IV) Mutation: ALK+ Line of treatment: Any 	 Publications reporting for following patient populations were excluded: Children Healthy volunteers Cancer other than NSCLC Stage I, Stage II and IIIa NSCLC Mutation status other than ALK+
Interven- tion	 Any pharmacological intervention 	 Vaccines Herbal intervention Non-cancerous therapy (supplements, metformin etc.)
Compara- tor	 Any pharmacological intervention Placebo Best supportive care 	Adjuvant therapy
Outcome	 Efficacy outcomes Progression-free survival Overall survival Overall response rate Complete response Par- tial response Sta- ble disease Treatment exposure Safety outcomes (Non- specific) Overall AEs Overall SAEs Overall TRAEs Safety outcomes (specific) 	Genetic outcomes Pharmacokinetic outcomes

Table 68: Inclusion and exclusion criteria

Description	Inclusion criteria	Exclusion criteria
	 Tolerability/dis- continuation HRQoL/PROs (any scale) 	
Study de- sign	• RCTs	 Non-RCTs Non-comparative clinical trials (single-arm trials) Observational studies (prospective/retrospective cohort studies, cross-sectional studies) Case reports and case series
Publica- tion/ study type	 Primary studies (con- ducted in humans) Systematic reviews published from 2018 (for citation-chasing only) 	 The following types of publications were excluded: Narrative publications Non-systematic reviews Editorials Letters Expert opinion The following study types were excluded: Animal studies In vitro/ex vivo studies Gene expression/protein expression studies
Publication timeframe	2008 onwards (conference proceedings from 2021 to date)	Publications prior to 2008
Language	Only English language arti- cles	Non-English articles

AE=Adverse event; ALK+=Anaplastic lymphoma kinase positive; HRQoL=Health-related quality of life; NSCLC=Nonsmall cell lung cancer; PRO=Patient-reported outcome; RCT=Randomised controlled trial; SAE=Serious adverse event; SLR=Systematic literature review; TRAE=Treatment-related adverse event.

Implementation and reporting followed the approach recommended by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. Studies were selected in two steps. Firstly, the title and the abstract of each record identified during the structured and supplementary searches were assessed for relevance as per the screening flowchart below. Secondly, full-text versions of the selected citations were examined in detail to select the final list of studies to be included. During both steps, screening was conducted by two independent reviewers, and any discrepancies were resolved by a third reviewer.

Following this approach gives 17 studies included in the SLR. The exclusion is outlined in the PRISMA diagram below.

The included studies in the SLR are presented below.

Table 69: Overview of included studies

Study identi- fier	NSCL C stage	Sam ple size	Stud Y pha se	Data collec- tion period	Follow- up du- ration (me-	Study country	Inter- ven- tion	Compar- ator
					dian), mos			
All/any t	reatment	-naïve	(n=6)					
PRO- FILE 1014	IIIB or IV	343		2011- 2013	~46.0	Multi-national (27 countries)	CRZ	CT (PEM + [CS/CB])
AS- CEND-4	IIIB or IV	376	111	2013- 2015	19.7	Multi-national (28 countries)	CER	CT (PEM + [CS/CB])
ALESIA	IIIB or IV	187	Ш	2016- 2017	61: ALC; 51.0: CRZ	Multi-national (China, South Korea, and Thai- land)	ALC	CRZ
ALEX	IIIB or IV	303	Ш	2014- 2016	48.2: ALC; 23.3: CRZ	Multi-national (29 countries)	ALC	CRZ
CROW N	IIIB or IV	296	III	2017- 2019	36.7: LOR; 29.3: CRZ	Multi-national (23 countries)	LOR	CRZ
PRO- FILE 1029	IIIB or IV	207	III	2012- 2014	22.5: CRZ; 21.6: CT	Multi-national (China, Hong Kong, Malaysia, the Republic of China, and Thai- land)	CRZ	CT (PEM + [CS/CB])
All ALKi n	aïve ± C1	「 (n=6)						
ALTA- 1L	IIIB or IV	275	III	2016- 2017	40.4: BRG; 15.2: CRZ	Multi-national (20 countries)	BRG	CRZ
Li 2021	IIIB or IV	120	Not spec ified	2017- 2018	NR	China	ALC	CRZ
Yang 2023	IIIB or IV	264	111	2019- 2020	28.48: ENV; 28.55: CRZ	China	ENV	CRZ
eXalt3	IIIB or IV	290	Ш	2016- 2018	23.8: ENS; 20.2: CRZ	Multi-national (21 countries)	ENS	CRZ
J-ALEX	IIIB or IV	207	III	2013- 2015	12.0: ALC; 12.2: CRZ	Japan	ALC	CRZ
PRO- FILE 1007 All ALKi p	IIIB or IV pretreate	347 d ± CT (111 n=4)	2010- 2012	12.2: CRZ; 12.1 CT	Multi-national (21 countries)	CRZ	CT (PEM/DT X)

Study identi- fier	NSCL C stage	Sam ple size	Stud Y pha se	Data collec- tion period	Follow- up du- ration (me- dian), mos	Study country	Inter- ven- tion	Compar- ator
ALUR	IIIB or IV	107	Ш	NR	NR	Multi-national (13 countries)	ALC	CT (PEM/DT X)
AS- CEND-5	IIIB or IV	231	Ш	2013- 2015	16.5	Multi-national (20 countries)	CER	CT (PEM/DT X)
ALTA-3	IIIB or IV	248	III	2019- 2021	15.9: BRG; 16.9: ALC	Multi-national (17 countries)	BRG	ALC
ALTA	IIIB or IV	222	II	2014- 2015	19.6: BRG 90 mg (QD); 28.3: BRG 180 mg (QD)	Multi-national (18 countries)	BRG (90 mg, QD)	BRG (180 mg, QD)
Treatment (any) naïve + pretreated (any) [n=1]								
AS- CEND-8	IIIB or IV	306	1	2015- 2017	19.6: all random- ised and 14.3: treat- ment- naive patients	Multi-national (18 countries)	CER (450 mg, fed)	CER (600 mg, fed); CER (750 mg, fasted)

Some of the studies have multiple publications. An overview of studies and articles are presented below

which we are started at the started		
Table 70: List of included studies	(categorised accordin	g to prior treatment)

S. No.	Study identifier (Author year)	NCT ID	Linked publication(s) or citations	Type of publication
All/a	ny treatment-	naïve		
1	PROFILE 1014	NCT01154140	Solomon 2016, Solomon 2018	Journal article
2	ASCEND-4	NCT01828099		Journal article
3	ALESIA	NCT02838420	Zhou 2018, Zhou 2022	Journal article
4	ALEX	NCT02075840	Mok 2020, Perol 2019, Gadgeel 2018, Mok 2020, Camidge 2019	Journal article
5	CROWN	NCT03052608	Mazieres 2022, Solomon 2022, Soo 2023, Mazi- eres 2021, Solomon 2022, Bearz 2022, Solo- mon 2022, Zhou 2021, Bearz 2022, Qing 2022, Bauer 2023, Solomon 2021, Liu 2022, Shaw	Journal article

S. No.	Study identifier (Author year)	NCT ID	Linked publication(s) or citations	Type of publication			
			2020, Bearz 2023				
6	PROFILE 1029	NCT01639001		Journal article			
All Al	LKi naïve ± CT						
7	ALTA-1L	NCT02737501	Camidge 2021, Popat 2016, Campelo 2021, Ahn 2022, Califano 2019, Camidge 2020, Camidge 2022, Popat 2021, Garcia 2022, Tiseo 2022	Journal article			
8	Li 2021			Journal article			
9	Yang 2023 NCT04009317		Zhang 2022	Journal article			
10	eXalt3	NCT02767804	Selvaggi 2021	Journal article			
11	J-ALEX	JapicCTI-132316; JO28929	Hotta 2022, Nakagawa 2020, Nishio 2018; Yo- shioka 2021	Journal article			
12	PROFILE NCT00932893 1007		Nishio 2018, Blackhall 2014, Yamamoto 2013, Nokihara 2013	Journal article			
All Al	LKi pretreated	± CT					
13	ALUR	NCT02604342		Journal article			
14	ASCEND-5 NCT01828112		Dcaglaotti 2016, Kiura 2018	Journal article			
15	ALTA-3	NCT03596866	Yang 2022	Journal article			
16	ALTA NCT02094573		Huber 2020, Lenderkin 2019, Kawata 2019, Get- tinger 2021	Journal article			
Treatment (any) naïve + pretreated (any)							
17	ASCEND-8 NCT02299505		Cho 2023, Cho 2019, Cho 2021	Journal article			

Danish Medicines Council Secretariat Dampfærgevej 21-23, 3rd floor DK-2100 Copenhagen Ø

+ 45 70 10 36 00 medicinraadet@medicinraadet.dk

www.medicinraadet.dk